线性模型中两类几乎无偏估计的研究

来源 :贵州民族大学 | 被引量 : 0次 | 上传用户:lianglianghepan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要针对一般线性模型和带等式线性约束的线性模型中存在复共线性的情况,提出两类新的几乎无偏估计,并对其性质进行探讨。具体内容为:一是在一般线性模型中,结合几乎无偏两参数估计和主成分估计提出了一类新的几乎无偏估计,即几乎无偏两参数主成分估计。并在均方误差矩阵意义下探讨了几乎无偏两参数主成分估计的优良性,得到该估计优于最小二乘估计、几乎无偏岭估计、几乎无偏Liu估计、几乎无偏岭型主成分估计、几乎无偏Liu型主成分估计以及几乎无偏两参数估计的充要条件。同时,通过实证分析和Monte Carlo模拟分析对理论结果进行了说明。二是在带等式线性约束的线性模型中,提出了一类约束几乎无偏两参数主成分估计。并分别探讨了约束几乎无偏两参数主成分估计在均方误差矩阵和均方误差意义下的优良性。在均方误差矩阵意义下,得到该估计优于约束最小二乘估计、约束几乎无偏岭估计、约束几乎无偏两参数估计和新约束几乎无偏两参数估计的充要条件。同时,在均方误差意义下通过实证和模拟分析对约束几乎无偏两参数主成分估计的表现进行了说明。三是分别以均方误差矩阵和均方误差为准则,对本文提出的两类几乎无偏估计的性质作比较分析。得到约束几乎无偏两参数主成分估计在均方误差矩阵意义下优于几乎无偏两参数主成分估计的充要条件,并通过实证与模拟分析对两类几乎无偏估计在均方误差意义下的表现进行了说明。最后,对本文的工作进行了总结,并指出了今后研究可以考虑的方向。
其他文献
智能配电网融合先进的自动化、信息化、互动化技术,支持分布式电源并网、用户需求响应、实现配电网自愈等功能,智能配电网是未来配电网发展的必然趋势,智能配电网规划的综合
通过等离子喷涂技术将YAG:Ce荧光涂层沉积在钛合金表面,沉积的涂层具有较为致密的结构和良好的发光性能。研究腐蚀环境下涂层荧光强度的变化规律,有助于相关环境中荧光监测技术的发展。已有的等离子喷涂YAG:Ce涂层在酸性腐蚀环境中腐蚀作用导致涂层结合强度下降过快,限制了涂层的使用寿命。本文通过等离子焰流对基体预热,研究了基体温度对单个YAG:Ce粒子扁平化规律,及涂层微观结构、相成分和荧光强度的影响。
由于人类活动的直接干预,导致黄土高原生态环境发生了前所未有的变化,使之成为我国生态环境最为脆弱的地区之一,所以研究黄土高原植被恢复进程具有非常现实的意义。本研究以黄土高原子午岭植被恢复过程中6种恢复阶段:农田、草地、灌木、山杨、混交林和辽东栎为研究对象,模拟植被次生演替阶段,通过研究土壤生态酶计量学、土壤线虫群落、土壤AMF和nirH两种微生物群落以及土壤酶动力学温度敏感性特征,得到主要结论如下:
随机集值微分方程是有效解决随机性与不确定性问题的数学模型,其在控制、生物和经济等领域有极其重要的应用.本文的主要目的是结合集值微分方程、模糊微分方程和随机微分方程的理论,分别研究二型Hukuhara导数定义下的随机集值微分方程与Hukuhara导数定义下的随机模糊微分方程的稳定性.主要内容如下:(1)分别给出了带二型Hukuhara导数的随机集值微分方程解过程的弱随机稳定性、几乎必然稳定性和-阶矩
中间相沥青是制备沥青焦和炭纤维的优质前驱体之一,其结构决定了所制备炭材料的微观结构和物理性能。国内外学者开展了许多关于碳质中间相的前沿探索、理论基础和应用研究工
经等径角挤压(Equal Channel Angular Pressing,ECAP)塑性加工后,镁及镁合金材料获得高强度和高延展性,其应用得到了大范围的扩展。对于ECAP过程中镁及镁合金室温下开动的滑移系较少导致易开裂问题,包套挤压工艺可有效解决试样表面开裂,成功实现镁及镁合金室温ECAP过程。通过借用数值模拟可以清晰地展示整个ECAP过程,然而目前常用的有网格模拟方法处理ECAP损伤演化过程有
随着火药技术的发展和成熟,对于火药的需求量和消耗量也大幅提升,在和平时期各国都会存储大量的火药武器,以便在突发的战争中能有效保卫国家安全。然而火药是一种易氧化且相
报童问题是供应链管理中的一个重要问题,在易腐货物、时尚和运动用品、季节性产品等一些现实库存问题中起着关键作用.在当今竞争激烈的市场中,由于需求的波动,企业通常面临调整最优订单数量的短缺或过剩的困境.然而,不可预测的需求往往被视为具有某种概率分布的随机变量.在许多情况下,决策者几乎不可能准确地获得概率分布信息.分布鲁棒优化方法可以有效地处理非精确概率分布的报童问题.与此同时,不确定需求的存在,会带来
纳米Ti02光催化剂具有无毒、廉价、催化活性高、化学稳定性好的优异特性,广泛应用于降解污水中的有机污染物。然而,TiO2禁带宽度较大(Eg=3.2 eV)只能吸收
高能量密度锂电池是当前电池领域迫切需要研究的一个方向。目前,锂离子电池负极材料容量较低是限制高能量密度锂离子电池发展的重要问题之一。然而,高理论容量的负极材料往往