泥质水合物储层降压开采特性与影响机制研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:w_h1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
天然气水合物资源储量大、分布广、能量密度大、燃烧清洁,实现其安全高效开采是全球研究热点和科技前沿。我国南海是重要的水合物资源富集区,其商业化开采将对国家能源结构优化与能源安全保障发挥重要作用。然而,南海水合物储层属于泥质低渗粉砂型,储层地质特征复杂,开采调控困难。目前,针对泥质水合物储层缺乏系统性研究,尤其是有效应力下泥质水合物储层渗透特性以及水合物与下伏气联采特性方面的研究鲜见报道。本文利用取样于南海的泥质储层样本开展研究,系统分析泥质水合物储层降压开采影响因素及作用机制,旨在为海洋水合物资源安全高效开采提供理论基础。针对有效应力作用的泥质低渗水合物储层渗透特性,本文自主设计搭建了加载有效应力岩心夹持器实验系统,测量了泥质低渗水合物储层样本的渗透率。揭示了初始水饱和度、水合物饱和度和有效应力对泥质储层渗透性的影响规律及作用机制;发现了有效应力升高过程泥质储层渗透率突变现象,分析了升高有效应力对泥质储层渗透率造成不可逆损害的原因;基于实验研究结果,提出了耦合有效应力的修正Masuda渗透率模型。以阐明泥质水合物储层渗透特性为研究前提,系统分析了气/水饱和两种泥质储层内水合物生成和降压产气特性影响因素及作用机制。揭示了降压开采过程有效应力对泥质储层的挤压作用是影响产气效率的关键,量化了3 MPa有效应力束缚的水合物和孔隙气残余量;发现了水饱和泥质储层降压开采过程的水合物均匀分解现象,分析了控制水合物均匀分解产气的主要因素,揭示了水饱和泥质储层的液态水增强储层传热性能的作用机制,这为提高泥质储层水合物分解产气效率提供了新思路。在厘清泥质水合物储层降压开采产气特性的基础上,首次通过实验和模型研究系统性分析了泥质水合物储层与下伏气降压联采产气特性。发现了降压联采过程水饱和泥质水合物储层封盖高压下伏气的现象,揭示了下伏气突破封盖流入水合物储层对温度、压力、水合物分解速率和产气速率的影响规律;通过分析下伏气对水合物分解速率、产气速率和产水量等多参数综合影响,初步论证了下伏气对水合物储层的降压增产作用;解析了降压联采过程水合物分解和下伏气产出的相互依存关系,阐明了降压开采过程本征渗透率、有效应力和水合物饱和度对水合物储层渗透产气特性的综合影响机制。基于本文实验研究结论,建立了水合物储层与下伏气降压联采产气预测模型和水合物分解前缘轨迹预测模型,与耦合有效应力的修正Masuda渗透率模型相结合,准确获得了降压联采过程水合物分解前缘精确轨迹和下伏气压力演变规律,自主设计实验验证了联采产气预测模型的可靠性。本文研究将为海洋水合物资源安全高效开采提供重要参考。
其他文献
甚高频容性耦合等离子体(Very high frequency capacitively coupled plasma,VHF-CCP)被广泛地应用于干法刻蚀和薄膜沉积等半导体制造工艺中。在CCP放电中,更高的驱动频率会导致轰击到基片的离子通量增加,这有利于提升刻蚀和沉积速率。更高的驱动频率还会导致轰击到基片的离子能量降低,这有利于减小高能离子轰击引起的基片损伤,也有利于进一步缩小刻蚀工艺的特征尺
学位
核酸是重要的生命遗传物质,其含量的异常表达与诸多疾病的发生息息相关,对其进行检测可以为疾病的早期筛查、疗效监控、病理揭示等提供基础。在众多核酸检测方法中,荧光比率分析方法可以校准来自光源以及复杂环境等的影响,因而具有更高的准确度,在生命分析等领域受到了广泛关注。然而,相对于单一强度信号的荧光探针,比率型探针的发展相对滞后,体现在探针种类较少且普适性不高。因此,本论文以聚多巴胺(PDA)为基础,结合
学位
材料是人类社会的基石。为了加快材料研发-应用的速度,使材料科学达成按需设计的终极目标,材料基因组计划被人们提出并实施。材料高通量实验技术是当前材料基因组计划的主流研究方法之一。材料高通量实验技术可以分为材料高通量制备技术和材料高通量表征技术两个部分。其中,共沉积法高通量薄膜制备技术结构简单,无需使用掩模就可以获得成分连续分布的多元样品,且多元样品中的各元素混合充分,无需对其再进行热处理。这十分有利
学位
大气压低温等离子体技术具有快速高效杀菌、绿色环保等优点在食品安全领域引起了国际上广泛的关注。但目前低温等离子体在水果、蔬菜及肉类等方面的保鲜技术尚处于初始研究阶段,存在一些基础性问题没有解决,如等离子体空间分布的均匀性、稳定性与时空演化特性的研究还不深入,同时还存在处理量小,实验过程长,处理效率低等缺点。低温等离子体保鲜技术根据等离子体是否直接接触被处理物可以分为直接处理与间接处理。本论文在大气压
学位
电解水制氢技术是实现规模化氢能制备和可再生能源转换的重要技术之一,其具备条件温和、产物纯度高、环境友好等优势。为了提升电解水的能量转换效率,需要研发更具成本效益的电催化剂。基于原位生长的方式制备的镍(Ni)、铁(Fe)基阵列具备价格低廉、高效、稳定等优势,因而成为了电解水领域的研究热点。本文围绕镍、铁基阵列,从外部因素(形貌、结构)和内部因素(本征活性、反应机理)两方面入手,由表及里。针对活性位点
学位
为达到磁约束聚变等离子体需要的中性束加热功率指标,中国核工业西南物理研究院设计了束流能量为200-500 keV,引出电流20 A,脉冲宽度为3600 s的四驱动负氢离子源。为了对负氢离子源进行优化设计,本文针对负氢离子源建立三维磁化等离子体流体力学模型,对单驱动、双驱动和四驱动负氢离子源进行模拟研究。该模型基于有限元分析软件COMSOL耦合了电磁场模块、静磁场模块和等离子体模块。为了保证三维模型
学位
本论文以设计构筑硫桥联双金属仿生功能体系为目标,通过合理调控辅助配体的空间立体效应,精准合成一系列具有低价态、低配位数的新型硫桥联双钴配合物,并详细探究其对氢气等小分子独特的活化与催化转化功能,从分子层面为开发基于地球丰产金属的双金属协同仿生催化剂提供重要的理论指导。首先,通过引入大位阻的硫醇配体,合成了一系列具有潜在反应位点的硫桥联双钴配合物。通过溴桥联双钴前体配合物[Cp(?)Co(μ-Br)
学位
传统的癌症化疗药物存在无靶向性、不可控释放及使用剂量大等问题,造成药物的生物利用度低、治疗效果差。具有肿瘤靶向能力的透明质酸(HA)作为纳米药物载体能够选择性的积累在肿瘤部位,减少对正常组织的伤害。利用肿瘤组织的特殊微环境,在靶向纳米递送体系中引入环境响应型的键,可实现对药物的控制释放,提高药物在肿瘤细胞内的有效浓度。在化疗的基础上,引入具有较高光热转换效率的聚多巴胺(PDA)纳米颗粒,实现化疗-
学位
随着我国经济的高速发展,高铁网络的建设步伐不断加快,“四纵四横”的高铁网络已经形成,“八纵八横”的高铁网络正加密成型。高铁网络已从早期基于高铁站的简单单线结构,跨越到基于高铁站、高铁线路以及高铁运输组织的复杂多层次网状结构。伴随着高铁网络规模的扩大和覆盖区域的增多,其在社会经济发展中发挥着日益突出的作用。因此,确保高铁网络安全意义重大,已成为了国家安全战略的重要组成部分。但不幸的是,近年来,随着全
学位
同轴枪强流脉冲放电等离子体具有超高速、高密度及高能量密度等特性,在等离子体空间推进、尘埃粒子加速和高温核聚变等领域具有潜在的应用。随着能源危机和环境问题的日渐突出,开发核聚变能源、探索聚变能的工程应用对于解决能源问题具有重大意义。磁惯性约束聚变(Magneto-Inertial Fusion,MIF)结合了磁约束方案(Magnetic Confinement Fusion,MCF)的长时间约束和惯
学位