冷原子系综内纠缠制备与纠缠连接

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:suka
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为第二次量子革命背后的核心科学之一,量子信息长久以来的一个中心目标便是构建大尺度的量子通信网络。量子力学基本原理在保证了量子通信相对于传统通信极高安全性的同时,也使得量子信号无法像经典信号那样通过复制增强,极大地限制了量子通信距离的增加。目前,光纤中量子密钥分发的最远距离大约在八百公里。为解决单光子信号在信道中随通信距离增加的指数衰减问题,进一步拓展量子网络距离,量子中继方案应运而生。量子存储器作为量子中继方案的核心器件,存储寿命、读出效率以及制备效率是其三个关键性的指标。冷原子系综由于具有相干时间长,自旋波向光子态转换效率高等优势,成为最有希望实现量子中继的体系之一。针对读出效率和存储寿命两项指标,本文设计了两路读写光共用写出空间模式的方案,使得原有长寿存储的技术能够与腔增强技术兼容。通过光晶格限制原子运动,选取磁场钟态降低扰动等多种手段,我们成功实现了亚秒级腔增强的原子与光子纠缠,使得系统兼具长寿命与高效率两项优点,推动了冷原子体系在远距离量子通信中的实用价值。进一步,为克服传统DLCZ方案原理上的概率性限制,我们利用里德堡阻塞效应实现了确定性单激发态制备。在此基础上,本文通过对两个里德堡能级的独立操控,实现了对里德堡激发态的“循环读取”,并利用这一技术实现了原子系综与单光子之间确定性的纠缠制备,突破了原有半确定性制备方案中由于后选择导致的概率性限制。在此基础上,我们进一步设计了两个独立里德堡平台之间基于单光子干涉及双子干涉的纠缠连接方案,并在实验中部分演示了其中的单光子方案,为实现远距离节点间确定性的纠缠连接奠定基础。最后,结合EIT技术对里德堡系综产生的理想单光子进行存储,我们实现了与测量设备无关的对另一个量子存储器的检验。该项工作对于关闭不可信量子存储器漏洞以及量子网络中器件的可信性检验具有普适意义。本文在存储器寿命与读出效率提升以及确定性纠缠制备、节点间纠缠连接等方面的工作不仅推动了冷原子存储器向多节点、远距离量子通信网络的迈进,也在多光子纠缠、量子计算等多个研究领域有着广阔应用前景。
其他文献
在现今生产生活中,聚合物材料由于其优异的性能和低廉的成本,已经成为人类生活中不可或缺的一部分。得益于其长链分子结构,聚合物材料往往表现出更高的韧性以及延展性,同时兼具足够高的机械强度。聚合物的加工成型涉及聚合物融化、输送及模塑过程。其中输送与模塑阶段与聚合物流变性能密切相关。这要求研究者对于聚合物熔体中分子链构象对外加流场的微观响应机理有着深入的认识。传统的管道理论能够对聚合物分子链的线性学流变行
学位
纳米孪晶结构金属(Nanotwinnedmetals)拥有优异的综合力学性能,例如高的强度、良好的塑性和加工硬化能力、优异的疲劳和断裂抗力等。这些优异的性能主要得益于其内部复杂的孪晶界-位错反应。近来,通过将纳米孪晶作为一种特殊的强/韧化组分引入到纳米晶或粗晶基体中,已成功实现多种金属或合金的强/韧化。然而,与纳米孪晶取向相关的强/韧化行为仍然未知。纳米孪晶作为一种典型的二维层片结构,即较大的孪晶
学位
先进航空发动机推重比和热效率的不断提升,对发动机关键热端部件所用材料的承温能力和高温服役稳定性提出了更高的要求。以国内航空发动机斜支板承力框架为例,该部件面临着现役材料承温能力不足以及引进国外材料制备困难等难题,为此,中国科学院金属研究所研发了一种承温能力达到750℃的镍基铸造高温合金K4750。由于部件需要长时间承受高温、复杂应力的交互作用,K4750合金必须兼具优异的高温强度和长期使用性能稳定
学位
冲刷腐蚀是材料表面与腐蚀性流体之间由于高速相对运动而引起的材料损伤现象,是力学冲刷和电化学腐蚀协同作用的结果。复杂的损伤机理在一定程度上制约了冲刷腐蚀问题的解决。钝性材料的冲刷腐蚀损伤普遍存在临界流速现象,只要流速超过某一临界值,材料的冲刷腐蚀损伤就会急剧增大。临界流速不仅是冲刷腐蚀损伤由轻到重的分水岭,更是损伤机制的转折点。因此,深入探究临界流速现象可以为解决复杂的冲刷腐蚀问题提供新的突破口。本
学位
蒸汽发生器用690合金传热管的性能可靠性和质量稳定性是压水堆(pressurized water reactors,PWRs)核电站安全运行的重要保障,而碳化物析出控制是690合金传热管获得均质显微组织和良好力学性能与耐蚀性能的关键。本文以工程化量级3吨大尺寸690合金电渣锭的变形组织控制为背景,针对690合金在连续冷却过程中出现的枝晶状碳化物及其析出演化行为进行了系统研究,详细讨论了枝晶状碳化物
学位
软X射线三维纳米断层成像技术在生物学、医学、材料科学等领域有着广泛的应用。细胞中的水对水窗波段的软X射线吸收弱,而有机物中的碳、氮等元素对其的吸收强,所以有机物在软X射线成像中具有较高的吸收衬度。因此仅需快速冷冻细胞,即可对其进行软X射线显微成像,得到完整的亚细胞结构。因此软X射线显微镜非常适合对含水细胞成像。软X射线断层成像技术通过采集多角度的吸收衬度投影图像,利用图像重建技术,重建得到细胞的三
学位
离子轰击技术是一种产生大面积自组织纳米结构的方法,具有经济、高效的特点。利用此方法制备的高线密度的准周期纳米波纹结构模板,在同步辐射、材料和生物等领域具有相当的应用潜力。提高自组织纳米结构的有序程度是此领域研究的重点和难点。目前,利用常规光刻技术制备周期性预制图形引导自组织纳米结构生长的方法,加工成本高、制作效率低,与离子轰击方法的兼容性仍需提高。因此,本文提出了利用离子轰击双层系统提高自组织纳米
学位
由于不锈钢具有良好的力学性能、机械加工性能和耐腐蚀性,被广泛应用于家庭用品、汽车配件、石油化工、海洋船舶、核电工业等行业。其中优异的耐腐蚀性主要取决于材料本身的结构和其表面纳米级的超薄钝化膜。钝化膜与各类局部腐蚀(如:点蚀、缝隙腐蚀、晶间腐蚀、应力腐蚀开裂和腐蚀疲劳等)的萌生具有直接的关系。对钝化膜的化学组成,结构以及在腐蚀环境中的结构演变的研究是理解钝化膜破坏机制的关键,是建立钝化膜结构与其宏观
学位
双连续结构金属材料是一种两相互相贯通而且连续的合金材料,具备高韧性、抗蠕变等许多优异力学性能,而受到研究者的广泛关注。如果把双连续结构金属材料中的一相做选择性腐蚀,我们可以获得另一种相的开孔多孔材料。多孔材料由于具有许多优秀的力学、物理和化学特性,可被广泛的用于各种承载结构和功能应用中,因而受到大家的关注。在近些年来,液态金属脱合金(Liquidmetaldealloying,LMD)已经逐渐发展
学位
强关联过渡金属氧化物(TMOs)中一般都存在电荷、自旋、轨道和晶格等自由度之间复杂的耦合和竞争,从而表现出许多独特的宏观物性,如金属-绝缘相变、高温超导、拓扑绝缘态等。作为一种典型的TMOs材料,二氧化钒(VO2)在68℃附近会发生显著的金属-绝缘相变(MIT),并伴随着电导率、红外透射率和磁学等性质的巨大变化。这一独特的MIT行为,使VO2相变材料在超快光电开关、神经元计算、阻变存储、微致动器和
学位