蜜蜂螺原体的侵染循环及其在蜜蜂体内的定殖研究

来源 :南京农业大学 | 被引量 : 0次 | 上传用户:seanyx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蜜蜂螺原体是一种螺旋状、能运动、无细胞壁的原核生物,主要寄生在青壮年蜂的体内,是引起我国蜜蜂“爬蜂病”的主要病原之一。20世纪80年代以来,蜜蜂螺原体病在我国各地养蜂区普遍蔓延,且常与孢子虫病、麻痹病等混合发生,给养蜂业造成了严重的经济损失。据报道,在蜜蜂螺原体病发病时期,蜜蜂、植物花及其它一些膜翅目、双翅目、鳞翅目昆虫内均能检测到螺原体,在养蜂地区的非发病时期,尤其是冬季和炎热的夏季却均未能检测到。根据研究结果,学者们推测出蜜蜂螺原体在自然界的一些可能的侵染循环途径,但一直缺乏系统的研究和直接的证据。本研究针对引起我国蜜蜂“爬蜂病”的螺原体Spiroplasma melliferum,建立了一种分子生物学快速检测方法,系统地对其宿主范围、可能的传播途径进行了研究,并对分离自同一时期不同宿主中螺原体的基本生物学特性及致病性进行了比较。初步研究了S.melliferum在蜜蜂中肠和胸肌内的定殖与侵染特征。针对引起我国蜜蜂螺原体病的病原菌S. melliferum,通过对Chelex-100DNA提取技术的改进,建立了一种分子生物学快速检测方法。该方法可以在2-4小时内检测出植物花、蜜蜂及其生活环境中是否含有螺原体,最低检测浓度为5~6个/mL。与常规分离培养法比较,该方法具有灵敏、快速、高效等优点,这为蜜蜂螺原体病的快速诊断及螺原体资源调查奠定了基础。为了探索蜜蜂螺原体在自然界中可能的传播途径及其侵染循环,本研究采用分子生物学快速检测方法和分离培养技术定期对蜜蜂及自然界中蜜蜂经常活动的场所中的材料、植物花及其它一些相关昆虫进行检测。从2010年3月到2012年1月,共采集了1339只意蜂(Apis mellifera)、131种昆虫、51种植物花和77个从蜂箱内采集的样本,并在其中92个样本中检测到螺原体,分离获得54株螺原体菌株。在一年四季(包括蜜蜂螺原体病发病时期和非发病时期)采集的蜜蜂样本中均检测到螺原体,以在春季、发病时期病蜂体内检测到螺原体的几率最高。此外,在发病时期采集的蜜蜂幼虫、蛹、植物花、其它昆虫、蜂房、巢门、巢脾等样本中,均检测到螺原体,在非发病时期,则仅在少数蜜蜂体内发现。表明蜜蜂螺原体长期存在于蜜蜂体内,可通过水平传播方式进行传播。为进一步证实蜜蜂螺原体可以通过水平传播方式在蜜蜂和植物花间进行传播,本研究采用人工接种法分别接种螺原体到蜜蜂和植物花上,对其传播途径进行了探索。结果显示:体内含菌的蜜蜂可以通过采食花蜜的方式将螺原体传播到植物花表面,而花表的螺原体又可以通过蜜蜂的采食传播到蜜蜂体内以及其它植物花的表面,传播到蜜蜂体内的致病性菌株可以引起蜜蜂“爬蜂病”的症状,而植物无任何病状。该结果为研究蜜蜂螺原体在自然界的传播途径提供了直接的证据。通过对分离自同一时期相同地点不同宿主(患病蜜蜂、健康蜜蜂、死蜂、打碗花、楝树花、一年蓬、蓼科植物花)中的7株分离菌株的形态学、运动性、基本生物学特性、血清学及分子生物学特性的研究及比较,发现7株菌的特性均符合Spiroplasma属的描述。其中,分离菌株MF1006和LK1001的生长速度最快,倍增时间分别为1.8h和2.4h;MF1008生长最慢,倍增时间为7.8h。菌株MF1006、YNP1001和LK1001在37℃均不能生长,最适温度比其余4株菌略低。代谢抑制试验、菌体变形试验和ELISA试验的结果均一致表明:螺原体S. melliferum CH-1的抗血清对菌株MF1006、YNP1001、LK1001几乎没有抑制作用,对其它4株菌的生长抑制作用却较强;ZHUF0901和MF0905的抗血清则分别与MF1006、YNP1001和LK1001发生较强的反应。根据16SrDNA和ITS序列构建的系统发育树显示:MF1006、YNP1001与Spiroplasma apis聚为一类;LK1001与Spiroplasma clarkii聚为一类;其它4株菌则都与S. melliferum聚类。以上结果表明同一时期同一地区的蜜蜂和植物花样本中所含的螺原体均不止一种;不同宿主中的螺原体均分别与S. apis和S. melliferum聚类,进一步证实螺原体在自然界中可通过水平传播方式进行传播。综上,提出了蜜蜂螺原体在自然界中的传播途径:(1)在蜜蜂螺原体病暴发时期(一般为春季4、5月),蜜蜂螺原体由含菌蜜蜂体内传播到蜂箱内蜜蜂经常活动的场所或蜂箱外界的植物花表面,健康蜜蜂或其它昆虫在含菌的处所和植物花表面活动后可将其携带或感染的螺原体传播到蜂箱内别处或其它的植物花表面,为其它蜜蜂和昆虫的再次感染提供侵染原;(2)在非发病时期,蜂场几乎没有爬蜂,蜜蜂螺原体检测到的几率也极低,推测此时螺原体不易穿过蜜蜂的中肠屏障到达淋巴组织大量繁殖而引起蜜蜂死亡,少量的螺原体在蜜蜂体内可能会长期生存或经消化道排泄在蜂箱内或周围后感染其它健康蜜蜂,当天气变化或其它因素致使蜜蜂抵抗力下降时,螺原体便可穿过蜜蜂中肠屏障导致蜜蜂的死亡,这可能也是在非发病季节蜂场也偶尔出现少量爬蜂的缘故。此外,通过饲喂新鲜菌液的方法对两株与引起蜜蜂“五月病”的S. apis聚类的螺原体MF1006、YNP1001以及一株与引起蜜蜂“螺原体死亡病”的S. melliferum聚类的螺原体MF1008的致病性进行研究,发现感染供试螺原体菌株的意蜂(Apis mellifera)在第5d时均开始出现“爬蜂”症状,但在相同的实验条件下,感染MF1006及YNP1001菌液的蜜蜂的发病速度较快。到第9d时,感染供试螺原体菌液的实验组意蜂的死亡率均明显高于对照组的意蜂(饲喂新鲜培养基),与对照组意蜂相比差异均极显著(1%水平)。从实验组及阳性对照组死亡的蜜蜂中均能分离到螺原体,在培养基对照组的死蜂内则未能分出。通过对死蜂内再分离物及饲喂的螺原体菌株的16S rDNA序列作比对,发现再分离菌株均与原菌株同源性最高,说明螺原体MF1006、MF1008. YNP1001确实是意蜂死亡的病因。菌株MF1006和YNP1001的发现丰富了对我国蜜蜂“爬蜂病”病原的认识,这是在我国蜜蜂和植物花上首次发现的除S. melliferum以外的另一种对蜜蜂致病的螺原体。最后,利用分子生物学检测方法在患病蜜蜂的中肠、淋巴液和胸部肌肉中均检测到螺原体,健康蜜蜂内则没有。应用透射电子显微镜对S. melliferum CH-1在意蜂的中肠和胸部肌肉中的分布、侵染机制及由其引起的宿主细胞的病理变化进行研究,发现螺原体通常大量地聚集在膜包裹的细胞质囊泡内,分布于中肠上皮细胞顶端和内部的核附近、基底面的质膜与基板之间、基板内部及胸部肌肉细胞内。相对于健康蜜蜂肌肉细胞内整齐排列的纤维束,被螺原体侵染的纤维束表现出明显的断裂、松散排列。这些症状都可能是导致“爬蜂”及蜜蜂死亡的原因。
其他文献
  聚合物材料的发展,给人类带来巨大的便利。不容忽视的是,聚合物材料的火灾危险性也不可小觑。无论是家具用品火灾,还是交通工具火灾,甚至近年来几起国内建筑工程外保温材料火
本文从仿生学角度出发,模仿天然生物材料的细观结构形式,设计构成特征合理的材料体系,将有机相聚甲基丙烯酸甲酯(PMMA)和无机相氧化锆(ZrO2)进行复合,制备口腔修复用PMMA/ ZrO2有
棉花是世界上重要的经济作物,其棉纤维的产量和品质直接关系到人们的日常生活。棉纤维的品质对纺织工业来讲尤为重要,高品质的棉花纤维不仅可以提高纺织业的工作效率而且可以生产出高质量的产品。LIM蛋白质家族是一类富含半胱氨酸且分子结构中具有一个或多个LIM结构域的蛋白质家族。每个LIM结构域,即(CX2CX17-19HX2CX2CX16-20CX2C/H/D)结构中通常含有两个锌指结构。现有的研究表明植物
  在火灾调查当中,工作人员必须对火灾发生的原因进行调查,对火灾事故进行处理。这些工作的进行都有依赖于收集火灾证据,但是由于火灾事故具有突发性,现场具有复杂性等特点,使得
  随着我国全民法治意识的提高,证据作为案件调查过程与诉讼中的重要依据,其地位的重要性日益凸显出来,而火灾痕迹物证作为证明火灾原因的重要证据也受到了广泛的关注。本文就
  植物油脂自燃火灾往往比较隐蔽,火灾损失比较大,甚至会危及人民的生命财产安全。但目前对于植物油脂自燃火灾的研究较少,在实际火灾调查工作中此类火灾起火原因认定主观性强
  本文介绍了含能材料爆炸火灾常用的分析检验方法及研究现状,并根据鉴定内容的不同,从外观特征检验、内部组分鉴定、热性能分析三方面对鉴定方法进行了分类阐述。重点介绍了
  准确分析和把握火灾事故调查工作的发展现状和存在的问题,创新体制,研究制定一个符合当前消防安全形势的工作机制,是火灾事故调查工作适应社会发展的必然要求。本文结合我国
小型猪作为实验动物在在国外已经广泛应用于生物医学领域。目前国外常用的小型猪有Gottingen小型猪、Essex小型猪、Yucatan小型猪、Hanford小型猪、Nebraska小型猪等。中国拥
蛋白质是由极性和非极性两类氨基酸通过肽键相连所组成,理论上应该是一种理想的表面活性剂。但由于其本身的特殊结构,多肽链的折叠盘绕,使得绝大多数蛋白质因非极性基团被包裹在