高阻抗表面缩减控制细长平板的宽角域雷达散射截面技术研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:ufs2269acjx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
隐身能力是新一代军用武器的重要特征之一,隐身技术发展在军事领域具有重要意义,其关键在于降低目标的雷达散射截面(Radar Cross Section,RCS)。目前研究多数集中在镜面散射的RCS缩减问题,而在实际应用中,对于目标的细长部位,通常还存在较强的表面行波散射,不可忽视。本研究以高阻抗表面(High Impedance Surface,HIS)为研究对象,同时结合频率选择表面(Frequency Selective Surface,FSS)吸波结构的应用,抑制了表面行波散射及镜面散射两个主要贡献源,实现了正入射兼顾掠入射的宽角域单站RCS缩减控制效果。本文的主要研究结果如下:首先,系统地研究了细长平板的单站RCS散射特征,重点分析了细长平板的表面行波散射特征及其形成原因,提出了一种低剖面螺旋通孔的HIS结构来抑制表面行波。进一步,设计了HIS结构与FSS吸波体的双层复合结构,上层FSS吸波体缩减镜面角域RCS,下层HIS缩减掠入射角域RCS,实现了宽角域RCS缩减性能。仿真和实验结果表明,双层复合结构正入射在1.0 GHz~4.5 GHz实现10 d B以上的RCS缩减,同时掠入射14°时在0.85 GHz~3.4 GHz内实现10 d B以上的RCS缩减。其次,分析了HIS结构在正入射时的作用机理,研究了金属通孔在不同入射情况时的作用,证明了在正入射时HIS结构与FSS吸波体的工作机理一致。根据正入射与掠入射的等效电路分析,提出一种兼顾正入射与掠入射RCS缩减的新型单层HIS结构,并通过RCS仿真以及实验验证了新型HIS结构的宽角域RCS缩减性能。研究表明,此新型HIS结构在1.3 GHz~4.5 GHz频段内不小于70°入射角范围内实现有效的RCS缩减,总厚度仅为20 mm。综上所述,本研究揭示了细长平板的RCS散射机理,提出了两类有效抑制镜面散射及表面行波散射的HIS结构,在L、S波段实现了宽角域RCS减缩,为实现高价值目标的隐身特性提供了设计基础。
其他文献
随着移动通讯技术的高速发展,人们对于微波元器件提出了更高的要求,而作为关键材料的微波介质陶瓷的重要性也不言而喻。Ba6-3xNd8+2xTi18O54陶瓷属于钨青铜结构Ba6-3xLn8+2xTi18O54(Ln为镧系元素)陶瓷体系,其凭借着较为良好的综合微波介电性能受到科研工作者的广泛研究,但是这个体系仍存在品质因数偏低以及谐振频率温度系数偏大的问题。基于上述问题,本文在x=2/3的基础上,通过
学位
近年来,为满足后摩尔时代高速和低功耗计算与存储技术发展要求,人们把目光转向了自旋波器件,于2018年提出了磁性绝缘体/非磁金属/磁性绝缘体的磁子阀结构。紧接着,我们提出了一种室温电控磁子阀结构及非易失存储器件,其是基于磁子阀结构实现电场调控器件中磁矩转动和磁阻的变化,实现了电控磁存储功能,可进一步降低器件功耗。本文着重围绕该器件结构中多铁交换偏置异质结结构进行研究,包括研究异质结材料的制备、产生机
学位
随着环境保护的不断普及,太阳能作为可再生能源在通信系统中的应用越来越受到关注,其正在逐步取代传统电源成为系统供电的替代方案。将太阳能电池和天线有效集成,可以缩减通信系统占用的体积,同时降低供电成本。目前,太阳能电池集成天线带宽窄、增益低,很难应用在宽带通信领域,且大多研究集中在与天线单元的集成。而平面螺旋天线具有频带宽、圆极化性能好、便于集成等优点。基于这一情况,本文对太阳能电池集成平面螺旋阵列天
学位
近年来,随着高性能计算设备以及低成本点云传感器的发展,计算机视觉的研究方向逐步从二维拓展到三维。其中,三维点云识别作为一项关键任务,是当今三维视觉领域的一大研究热点。随着人工智能的发展,基于深度学习的点云识别算法是当下的主流研究方向。其中,以Point Net++为代表的层次表示方法以局部到全局的方式有效地挖掘了点云中潜在的形状信息,在点云识别任务中有着突出的表现。然而,现有的层次表示方法在采样策
学位
随着通信技术的不断发展及5G商用的大规模铺开,信号传输朝着高速高频和低时延的方向不断发展。聚四氟乙烯(PTFE)基复合材料拥有着在微波频段稳定的微波介电性能和易加工的特性,可以满足微波电路和微波器件日益增长的高频化、集成化需求。本实验选取PTFE为基材,以Ag@TiO2核壳结构、ZnNb2O6陶瓷作为填料,以LCP A950纤维作为增强相,对具有高介电常数以及中低介电常数的两种PTFE基微波复合材
学位
氧化铟锡和二硫化钼,作为原子层厚度的高迁移率新型超薄半导体材料,可抑制短沟道效应,提升栅控,并为高截止频率器件的实现提供可能,由此受射频领域工作者关注。此外,建模工作可预测器件性能指标,降低实验试错成本,很大程度促进射频领域发展。然而,针对新型超薄材料射频晶体管等效电路建模工作却少有展开。因此,为分析新材料器件的直流和射频特性,同时通过模型参数分析结果指导器件工艺和新材料生长的优化方向,本文开展氧
学位
随着互联网和通信产业的飞速扩张,微波射频电路和系统越来越受到各界科研工作者的重视。面对划分地越来越细的频段,多频的元器件及电路设计成为研究热门。多通带滤波功能性融合器件是一种将多路滤波功能同时集成到传统微波器件的单体多功能融合器件,能够在射频电路前端的多个关键节点处滤除干扰信号以及非线性器件产生的交调和谐波信号。本论文主要针对高选择性多通带带通滤波器,高隔离度多通带滤波功分器以及多通带开关切换冷热
学位
应用自适应光学(Adaptive optics,AO)技术校正光束经随机介质传输时的波前相位畸变,消除其对成像系统的影响。当波前像差快速变化时,迭代时间长、收敛受限的传统算法无法达到自适应光学系统实时校正波前的要求。因此,本论文提出了基于贝叶斯优化(Bayesian Optimization,BO)下的卷积神经网络(Convolutional Neural Network,CNN)的非迭代式波前校
学位
婴幼儿血管瘤,以下简称血管瘤,是小儿临床最常见的软组织肿瘤之一。血管瘤1岁之前的发病率高达10%-20%,大部分可自动痊愈,但是部分严重的会威胁到婴儿的正常生长乃至生命。准确判别血管瘤风险等级并采取相应的治疗措施,这一工作目前主要是由具有较高专业素养的儿科医生手动完成。高专业素养儿科医生的缺失,部分家长对血管瘤风险的忽视,容易耽误血管瘤的及时治疗。使用人工智能的方法,对血管瘤的状态做出自动且准确的
学位
基于MRI图像的自动分割算法在计算机辅助诊断及治疗等方面有着广泛应用。近年来,基于深度学习的图像分割技术快速发展,但在精确度和鲁棒性上依然不能完全满足严苛的临床要求。比如,现有分割方法有时难以区分器官与组织的边界,对小器官的分割效果也不甚理想。本文针对MRI图像多器官分割中的难点,研究了网络特征的间隔弥合问题及解耦问题,并通过改进网络结构及损失函数,提高分割精度。在MRI图像多器官分割网络中,经常
学位