云环境下隐私保护的机器学习算法研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:akiro
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着机器学习和云计算的快速发展,利用云计算平台执行机器学习任务的模式应运而生。云计算服务商利用具有强大计算能力的服务器,向用户提供灵活轻便的机器学习服务,从而显著减轻用户的计算负担。然而,将数据发送到云服务器进行计算的方式对用户数据的安全带来巨大挑战。对于云环境下的数据隐私泄露问题,现有的解决方案主要基于三种技术,即同态加密、安全多方计算以及差分隐私。同态加密通过加密大量数据来保护隐私,但会带来巨大的计算开销,因此在实际生产环境中难以有效应用。安全多方计算通常使用秘密共享等密码学技术保护隐私,但会在云服务器间交互传输大量数据,因此存在通信复杂度高的问题。差分隐私可以理想地克服其他两种方法的缺点,但由于在原始数据中引入了随机噪声,差分隐私技术会引起明显的性能损失。考虑到现有方案的不足,本文结合同态加密和秘密共享技术,针对不同的机器学习算法,提出了对应的隐私保护方案。首先,针对云环境下线性回归算法训练以及预测的安全问题,本文提出了一种基于ElGamal同态加密和加法秘密共享的隐私保护线性回归方案。本文利用了基于ElGamal同态加密和加法秘密共享的密文乘法协议,采用小批量梯度下降算法,在云服务器协作的系统框架上实现了隐私保护的线性回归训练和预测方案。理论分析和实验结果表明,本方案有效保障了线性回归算法执行过程中的数据安全,并且在保证模型精度的前提下,显著降低了云服务器间的通信开销。其次,针对云环境下卷积神经网络算法预测的安全问题,本文提出了一种基于Paillier同态加密和加法秘密共享的隐私保护卷积神经网络预测方案。首先通过加法秘密共享技术实现了隐私保护的数据传输方法,然后利用Paillier同态加密算法保护了网络模型的安全,最后利用一系列安全协议,在云服务器上计算密文条件下卷积神经网络的预测结果。实验结果表明,本方案不仅保证了数据的隐私性和预测结果的准确性,并且显著降低了云服务器的计算开销。最后,根据提出的隐私保护机器学习方案,本文对云环境下隐私保护的机器学习系统进行了设计。首先对系统进行了需求分析,确定了系统的功能及非功能需求,其次根据系统的需求,进行了总体设计以及相关功能的详细设计,最后给出了系统的预期效果。
其他文献
随着研究及应用的不断深入,无人机逐渐从人工操作、单机、预定路径飞行和单任务发展到智能化、大规模机群、动态路径飞行和多任务。因此,实现无人机之间、无人机机群与控制中心之间数据和控制消息的高效传输逐渐成为研究热点。相比传统自组织网络,无人机节点的高机动性使其网络拓扑更易发生变化,对路由算法性能要求更高;同时,无人机一旦升空,电池能量也无法得到补充,通信能量开销也变得无法忽视。因此,亟需研究一种能量开销
学位
作为现代战争中的“千里眼”,合成孔径雷达(Synthetic Aperture Radar,SAR)可以对环境进行实时二维成像,是获取战场情报的关键设备。其先进的工作体制以及优越性能使得对SAR进行干扰面临着诸多挑战:对SAR的压制干扰对干扰功率需求较高;对SAR欺骗干扰所需侦察参数难以实时精确获得,并且对计算资源需求较高。本文从SAR成像技术的基本原理出发,针对工程实践中SAR干扰技术实现难点,
学位
随着现代信息处理技术及图像传输技术的飞速发展,人们对数字图像能够表达信息的能力要求越来越高。图像超分辨率(Super-Resolution,SR)是一种提高数字图像分辨率的技术,在数字图像处理领域应用广泛。图像超分辨率可以将低分辨率(Low-Resolution,LR)的图像重建恢复出一张高分辨率图像(High-Resolution,HR)。高分辨率技术通常在硬件和软件层面上实现,在硬件层面上,图
学位
如今,数据的大规模增长致使工程领域中产生了大量具有高维性,动态性,层次性和相关性的复杂数据。针对复杂数据的研究对科技的进步具有重要意义。多任务聚类和动态社团检测作为研究复杂数据的重要方式,受到了学者们越来越多的关注。多任务聚类共同学习多个任务,通过在相关任务间迁移知识提升每个任务的聚类性能。社团检测通过揭示节点间相互关系,找出紧密相连的节点簇,使得簇内节点强连接,而簇间的节点弱连接。动态社团检测跳
学位
区块链是密码学、分布式数据存储、点对点传输、共识协议等技术的多元融合,具有去中心化、不可篡改性、匿名性、自治性、公开透明等特点,被视为继云计算、物联网、大数据之后的又一颠覆性技术,受到各国政府、金融机构以及学者的高度关注。共识协议是区块链技术的核心,可以保障区块数据的一致性和有效性。区块链系统中最常用的共识协议有工作量证明(Proof of Work,简称Po W)类、权益证明(Proof of
学位
随着卫星通信技术的不断发展,小型化卫星通信手持平台可以为应急、救灾、反恐、海洋、野外勘探、科学考察及新闻采集等领域提供了更新、更便利的远程通信手段。多种行业应用对当前终端提出了形态小型化和通信模式多样化的要求。一方面,随着芯片制造工艺和处理器技术的迅速提高,小型化低功耗通信设备处理平台已经逐渐由板级系统(System On Board,SoB)向片上系统(System On Chips,SoC)过
学位
基于雷达等物理传感器采集到的点云数据存在噪声、低分辨率等问题,无法满足如:增强现实(AR)、虚拟现实(VR)、自动驾驶等典型计算机视觉应用需求。一般地,采用生成点云的方式来解决低分辨率的问题,而深度学习中生成对抗网络(GAN)以及自动编码器(AE)都可以实现该功能,但是生成对抗网络(GAN)不适合处理离散数据并且训练时可能出现不稳定的情况。而基于PointNet设计的自动编码器(AE)结构很好地解
学位
现有软件大量使用类型不安全的语言(如C/C++等)进行编写,或者采用了基于这些语言的底层实现。类型不安全的语言缺乏对数据访问的边界检查,容易产生内存泄露和篡改,攻击者可以利用此类漏洞修改代码指针,使程序执行非法控制流路径。偏离正常控制流的程序执行可能造成严重后果,当前广泛部署于操作系统中的DEP,ASLR机制可提供一定程度的内存漏洞防护,然而代码重用等主流攻击技术仍可成功绕开此类防护,并构造满足图
学位
动态污点分析是一种针对二进制软件进行脆弱性分析的技术。该技术将程序中非信任来源的数据标记为污点数据,并在程序运行过程中跟踪污点数据的传播过程,从而检测程序中存在的污点数据非法使用情况。现有的动态污点分析技术面临性能开销挑战,主要体现在仅以二进制程序单条指令为粒度进行动态污点跟踪,在被监控二进制程序的每条指令前插桩用于污点跟踪的代码,从而带来了巨大的性能开销。针对上述问题,本文针对二进制运行过程中的
学位
车联网作为智能交通系统中的重要组成部分,在交通管理、安全驾驶以及网络服务等方面均得到了广泛的应用,为提供安全的交通环境发挥重要作用。另一方面,由于车联网具有网络拓扑变化快、通信稳定性差等特点导致车辆节点容易遭受到多种网络攻击,这些网络攻击又为智能交通增加了很大的安全隐患。节点异常检测是实现网络安全的一道重要防线,当网络遭受攻击时,高效的异常检测机制可快速检测出异常节点,并将其隔离网络之外,避免影响
学位