论文部分内容阅读
深入了解城市居民的公交出行特征,及时、准确、全面地掌握公交出行数据,有利于公交管理部门做出科学的公交规划和运营决策,保证城市公共交通系统正常高效地运营。随着公交IC卡的普及和应用,在方便了广大乘客的同时也提供了一种新的公交客流调查统计手段。公交IC卡、乘客自动计数系统(APC)等先进技术的应用可以获取相对实时动态的客流信息,同时也为获得乘客出行OD提供重要依据。 论文研究了公交IC卡数据的处理和分析方法,根据一站式IC卡刷卡数据判断了乘客的上下车站点,提出了改进的结构化模型对公交线路客流OD进行估计。综合分析研究了既有的OD推算方法,结合算例用不同方法进行求解,对改进的结构化模型的的参数进行灵敏度分析,并验证了模型的优越性,分析了公交线路的站点吸引特征和客流OD出行特征。 论文首先分析了公交IC卡数据结构,详细研究了乘客出行、公交线路及站点、公交运营调度等公交基本信息。在现有IC卡数据及技术条件下,提出了乘客上下车站点的判断方法。针对上车站点的判断采用了聚类分析法,结合公交运营调度信息进行时间匹配,得到了各站点的上车人数。在此基础上提出了基于单个乘客刷卡数据与基于站点吸引两种下车站点判断方法。同时,综合考虑了乘客的出行距离、站点附近的土地利用性质以及站点吸引特征等因素,基于站点吸引得到了各站点的下车人数。 其次,在已知各站点上车人数的基础上,提出了改进的结构化模型对公交线路客流OD进行估计;结合各站点上下车人数,综合分析研究了概率论模型、Markov链方法、迭代比例拟合(IPF)方法和基于流体动力学理论的Tsygalnitzky方法等既有的OD推算模型和方法。通过具体算例对改进的结构化模型的吸引参数进行灵敏度分析。针对各种模型方法所求结果的对比分析表明,改进的结构化模型在不需要各站点下车人数的情况下可直接得到公交线路客流OD矩阵,具有一定的优越性。特别是对一站式IC卡数据处理更为方便和直接。 最后,论文以单线路公交一日内早高峰时段的IC卡刷卡数据为例,对一站式IC卡刷卡数据进行处理分析,得到了各站点上下车人数,并利用不同方法对站点间的客流OD进行推算。通过对公交线路各站点上下车人数、路段断面流量以及公交线路客流OD分布情况的分析,得到了公交线路的站点吸引特征和乘客出行特征。