交流电场下导体表面附着水滴的振动、放电规律研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:jc422177405
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
输变电工程不断向市区的转移以及架空输电线路电压等级的提高,带来了更为严重的电磁环境问题,尤其是潮湿天气条件下,附着于架空线路表面的水滴能够引起导线附近的电场发生畸变,造成更多的电晕放电事件。大部分现有工作主要集中在降雨强度、导体表面润湿特性、雨滴电导率等参数对电晕放电特性的影响,缺乏对线路导体表面水滴动态过程的全面研究,特别是对水滴动态过程与空间电场畸变关系的定量研究。本文在理论分析的基础上,基于有限元仿真模拟以及高压试验,分析了交流电场作用下导体表面水滴的运动规律及其对空间电场的影响机制,研究结果有助于完善潮湿环境下导线的放电机理,为架空输电线路的电磁防护提供理论支撑。本文采用多物理场耦合仿真软件COMSOL Multiphysics 5.6与“球-板”高压试验相结合的方式,从交流电场下导体表面水滴的受力分析出发,研究分析了水滴体积、外部施加电场强度以及“固-液”表面接触角对水滴振动规律以及空间电场分布的影响,揭示出导体表面振动水滴的频率、相位、幅值与交流电压的联系,提出了导体表面振动水滴动态接触角的变化规律,论文研究结果主要有:(1)水滴在交流电压的半个周期内经历了一次拉伸和压缩的过程,其振动频率为交流电压频率的两倍,且与水滴体积、施加场强以及表面接触角没有直接的联系。水滴的形态轮廓主要在三种状态之间变化:扁平形、半球形以及圆锥形,且球电极上、下表面水滴形态轮廓的变化具有相似性。(2)基于仿真和试验研究发现,交流电场下球电极表面水滴的振动相位滞后于交流激励的相位,且相位差随着水滴体积的增大而增大,但与表面接触角以及外部施加电场强度没有直接的联系。(3)仿真分析发现,水滴体积、施加场强以及表面接触角影响着导体表面振动水滴的形态轮廓,导致附着水滴对空间电场的畸变程度不同,揭示出空间场强的畸变程度受到水滴体积、施加场强以及表面接触角的综合影响。(4)“球-板”高压试验研究发现,球电极上、下表面“固-液”动态接触角在水滴振动周期内呈正弦变化,表明动态接触角的变化趋势可能与施加电压的类型相关。振动周期内存在一个最大动态接触角和最小动态接触角,前者出现在水滴形状呈扁平状时,后者出现在水滴形状呈泰勒锥状时。
其他文献
脑-机接口(Brain-Computer Interface,BCI)最早应用于医学康复领域,为神经功能损伤患者提供了一种有效的治疗手段。随着脑科学和信号处理技术的高速发展,BCI技术已经在医学、娱乐、交通和航天等多个领域取得了长足的进步,具有重要的应用价值和广阔的发展前景。能否简单方便地记录脑电信号(electroencephalography,EEG),得到的EEG信号是否准确可靠,以及算法性
学位
高绝缘、低损耗的高性能绝缘材料是电力装备与电力电子器件的永恒需求。纳米复合技术作为提升绝缘材料击穿场强与导热性能的重要技术手段,具有重要的理论研究与工程应用价值。然而,受制于电气性能提升幅度有限(提升幅度通常低于30%)、纳米复合材料介电损耗上升以及纳米颗粒的长期稳定性和分散性差等问题,纳米复合技术的大规模工业化应用仍面临挑战。本文在近年来有关学者提出的一维纳元胞结构可在横向尺度限制电子倍增及输运
学位
直流微电网具有变换环节少、供电容量大、供电可靠性高等优势。分布式电源和直流型负荷接入电网容量逐年增加,为发挥直流微电网源荷高效匹配的优势,基于直流变压器(DC transformer,DCT)互联的多电压等级直流微电网已成为电网重要的发展趋势。DCT互联的双极直流微电网具有多供电回路、接地可靠等优点,但其网络拓扑复杂且潮流分布受柔性设备控制影响。此外,不同柔性设备对双极直流微电网电压偏差和不平衡的
学位
电力系统的年度发电优化是生产运行中的重要环节,其对网内发电机组的年度启停与出力计划进行跨区域、跨季节的整体调度,优化各类发电资源配置,为电力系统的中长期规划、发购电决策优化及政策制定提供重要参考依据。但在向高比例可再生能源系统转型的背景下,传统的年度优化方法正面临许多新的问题。第一,随着电源种类增多,系统规模增大,要在年尺度优化中确保求解精度与求解效率对模型和算法都提出了更高的要求;第二,可再生能
学位
稳态视觉诱发电位脑-机接口(Steady-State Visual Evoked Potential-based Brain Computer Interface,SSVEP-BCI)系统具有校准时间少或无需校准、信息传输率高和BCI盲率低等优点,因此被广泛应用于脑控打字系统设计和外部设备控制。从信号解码角度出发,实现高性能SSVEP-BCI系统的关键在于快速和准确地解码出用户所注视的视觉刺激目标
学位
当前我国正处于大力建设能源运输基础设施阶段,保证输油气管道安全稳定运营对经济发展和社会安全具有重大意义。牵引供电系统运行过程中无可避免会产生杂散电流导致埋地金属管道腐蚀,且高压输电线路产生谐波对周围埋地金属管线造成谐波感应干扰,这些问题对金属管道运行带来极大的安全隐患。本文以金属管道的腐蚀评估和防护为核心,对直流腐蚀防护设施的故障检测和交流腐蚀评估阈值展开研究,提出了对排流网腐蚀故障位置和等级的诊
学位
随着社会经济发展对能源需求及环境保护关注度的日益增长,传统化石能源的有限性及污染性促使着人们寻找新的能源替代。多能源耦合系统通过整合优化多种能源,实现不同能源间的协调互补,为解决能源和环境问题开辟了新的思路。多能源耦合系统可有效发挥不同能源间的协调互补特性,充分提高系统的综合能效和可再生能源消纳能力。然而,随着可再生能源的大规模并网,多能源耦合系统内净负荷波动加剧,导致系统受到较大的冲击和影响。为
学位
随着我国“双碳”目标的提出,电动汽车与风电得到了大规模发展。车网互动技术使得电动汽车能够快速响应电网功率调节,在风电机组的电气或机械元件中增添附加的控制环节调节俯仰角与转子速度,可使风机具备参与系统频率主动调节的能力,未来大规模电动汽车与风电可作为电力系统重要的调节资源。因此,减少车网互动中的电池损耗,以及优化配置电动汽车与风电的功率和容量以最大化市场收益的相关研究备受关注。基于以上问题,本文的具
学位
氢能作为一种重要的清洁能源,在我国工业生产、电力系统运行以及绝缘设备故障诊断领域发挥着重要的作用。同时,大力发展氢能是我国达成碳中和目标的重要手段,是电力系统能源转型过程中实现主网稳定运行的重要保障。然而,由于氢气具有无色无味、爆炸极限低、易泄漏的特点,对氢气的痕量检测及实时监测已经成为国家新型能源体系、国民经济发展及国家安全领域的关键技术之一。金属氧化物半导体(MOS)气敏传感器由于易于携带,对
学位
架空配电线路作为配电系统的关键组成部分,保证其安全、可靠运行是电力系统传输电能至用户的重要前提。架空配电线路发生故障时多以单相电弧性接地故障为主,该类故障电气特征微弱,使得传统基于电压、电流特性的故障定位方法存在故障判定不准确、定位误差较大等问题。除了电压、电流发生变化外,电弧产生过程中通常伴随着大量电磁辐射,电弧电磁辐射是线路电弧故障在发展过程中的关键特征参数之一,研究故障电弧的电磁辐射特性及定
学位