Ca和Ti对镁合金抗氧化性和力学性能的影响

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:982114
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镁合金具有比重小、比强度比刚度高、阻尼减震性能优良、切削加工性能好、电磁屏蔽能力强、尺寸稳定和容易回收等诸多优点,近年来已成为汽车、通讯电子和航空航天领域重要的轻质金属结构材料,显示了极大的应用前景。我国具有丰富的镁资源,原镁产量和出口居世界首位,但是镁合金的研究和应用还比较落后。如何将我国的镁资源优势转变为技术和经济优势,促进国民经济发展,是摆在我们面前的迫切任务。因此,开展镁合金研究对于我国的经济和建设具有十分重要的意义。 本文以AM50和AZ91合金为基,通过添加Ca和Ti, 浇铸后经挤压或轧制制备了几种不同成分的实验合金,开展了如下的研究:(1)测试了各实验合金的燃点,通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)、俄歇电子能谱(AES)等分析和测试手段,系统研究了含Ca或Ti的AM50和AZ91镁合金氧化膜的结构,并探讨了其氧化机理。(2)研究了合金元素Ca或Ti对挤压和轧制AM50镁合金显微组织和力学性能的影响。(3)测试了含Ca或Ti的挤压和轧制AM50镁合金热处理后的力学性能,研究了热处理过程中合金组织的演化规律,探讨了热处理强化机制。(4)测试了含Ca 或Ti的挤压和轧制AM50镁合金的蠕变性能,分析了其蠕变强化机制。 研究表明,Ca能显著提高AZ91和AM50镁合金的燃点,测得AZ91+1Ca和AM50+1Ca的燃点分别高达860℃和874℃;Ti对AZ91和AM50镁合金的燃点有小幅提高。宏观及微观观察表明,Ca的加入使AM50和AZ91合金的表面形成了一层致密均匀的具有保护性的氧化膜, 而Ti加入AZ91和AM50合金后形成的氧化膜虽然比较规则,但不连续不致密,不具保护性。以AM50+xCa(x=0,1,2%)为例,分析了氧化膜的组成和结构,发现AM50+xCa(x=1,2%)合金的氧化膜主要由MgO和CaO组成,从AES曲线反映的氧化膜剖面上各元素的浓度分布可以把氧化膜分成两个亚层,最外层主要由CaO组成,内层主要由MgO组成,并从热力学的角度论证了这种推论。 含Ca的AM50镁合金挤压或轧制后,其显微组织比对应的铸态组织明显细化,晶粒及第二相沿加工方向分布并出现了孪晶组织,Al2Ca相形成并抑制Mg17Al12相的生成,由于Al2Ca相热稳定性较高,因此可以显著提高合金的高温力学性能和蠕变性能;挤压和轧制AM50合金添加Ti后,其显微组织明显细化,力学性能显著提高。 挤压AM50+xCa镁合金的固溶处理是第二相Mg17Al12快速溶解于基体而Al2Ca逐步变细变小并断开成为颗粒的过程;时效处理是Mg17Al12相以细小粒状从过饱和的基体中析出的过程。热处理后,拉伸性能有所改善,但效果不是很明显。 添加Ca后,挤压和轧制AM50镁合金在蠕变过程中有细小的Al2Ca和CaMnxAl2-x相从基体析出,与原有的Al2Ca相一起,对合金蠕变性能的提高起到有益作用,其蠕变强化机制为晶界强化,位错钉扎和位错攀移。
其他文献
尽管生物法已被广泛报道用于处理清洗剂废水,但清洗剂废水具有的起泡性强、毒性大和可生化性差等特点以及各种环境胁迫因子的存在均会对微生物活性与群落结构产生不利影响,进而
废水中污染物的去除一直以来是环境工作者关注的焦点,然而目前的降解方法忽略了污染物本身所携带的化学能,研究开发一种既可以降解污染物又能够充分利用其自身化学能的新方法,不
火力发电厂是我国最主要的烟气排放源,会产生大量的SO2及Nox,给大气环境造成了很大的危害.介绍了目前几种常见的烟气脱硫技术,并对一些新兴脱硫技术进行了展望.
在润滑工程领域,润滑油添加剂已经被广泛的应用于各种润滑油中,它们起到了减小摩擦系数,降低磨损量甚至对摩擦表面损伤部位进行修补的功能。近年来,纳米材料的出现为润滑油添
本研究针对目前国内甲板防滑涂料附着力低、易老化、低温性能差等问题,通过研究环氧树脂对聚氨酯(PU)基体改性的影响,研究碳化硅(Si C)短纤维的制备、改性及SiC纤维增强的新型复合防滑剂设计,优化、确定涂料最优配方,成功地研制出了一种附着力大、防滑性优异的SiC纤维增强的聚氨酯系甲板防滑涂料。研究表明,采用一步加料法合成PTMG/MDI型聚氨酯预聚体,经环氧树脂E44改性后制备的环氧/聚氨酯(PU
水体有机污染是当前极令人重视的环境问题,其远期健康危害是近些年来的关注热点。我省位于长江下游地区,癌症发病率和死亡率居全国前列。我省的主要饮用水源同样受到有机污染
为提高饮水安全性,各国专家学者们对水体硝酸盐污染修复进行了大量研究,但是其低碳源、贫营养的条件抑制生物反硝化,成为瓶颈问题。外加碳源的方法增加了投加成本并带来二次
学位
多层陶瓷电容器(MLCC)由于其体积小,温度稳定性和电压稳定性好而得到了越来越广泛的应用,尤其是在日常的电子消费品中,如手机,电脑,PC-TV等。而铁电-铁磁耦合材料由于其磁、电
聚间苯二甲酰间苯二胺(PMIA)具有优良的耐高温性能、耐焰性与可纺性,被广泛地应用于产业用和服用纺织品,在耐高温的场合,更是有着不可替代的作用。随着高性能纤维需求的不断提高,间
学位
含砷尾矿占用大量土地,并向环境释放砷,带来一系列环境与健康问题。通过种植与收获超富集植物去除土壤或尾矿中的砷,减少砷污染,已被证明是一种极具潜力的修复技术。研究砷超富集