用于S波段光波导放大器的有机/无机复合增益介质制备及研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:moete
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光通信技术的出现不仅提高了信息传递的效率,改变了人类的生活方式,更极大的促进了世界的发展与进步。在此技术领域中,以二十世纪八十年代诞生的掺铒石英光纤放大器(Erbium Doped Fiber Amplifier,EDFA)为代表的全光放大技术解决了在远距离传输中由于光信号衰减损耗而对光通信网络传输中的速率的问题与距离的限制。随着网络通信需求呈指数性增长对数据传输的要求也在不断提高。如何实现更大容量信息传输和更快实时信息处理以满足在网络通信中日益增长的需求已经成为人们关心的焦点问题。目前在C+L(15301625 nm)波段的光放大技术研究已经有了长足的进展,但关于S波段(14601530 nm)的光放大技术还处于探索阶段。稀土元素铥掺杂的材料因Tm3+离子3H4-3F4能级辐射的1.4μm近红外光位于光通信S波段,所以研制掺Tm3+离子的光放大器对S波段光信号的放大具有重要意义。用于全光放大通信系统的光放大器主要有光纤放大器和光波导放大器。当前,掺Tm3+离子的光纤放大器TDFA研制已经取得较大的进展,但是由于光纤放大器以光纤为载体,实现信号光的有效放大需要较长的光纤,所以在集成器件、光纤到户、车载、机载等短距离通信系统中受到了一定的限制。而于光纤放大器相比而言,光波导放大器可以通过提高稀土离子的掺杂浓度来实现在单位长度的较高增益。并且小型化、可与其他电子器件集成的光波导放大器在短距离、集成通信系统中能够有效地降低其插入损耗和耦合损耗,因而更具有集成化发展前景。光波导放大器根据增益介质的不同,可分为无机光波导放大器和有机光波导放大器。相对于无机的晶体等材料,有机聚合物有着加工工艺简单、价格低廉和更利于制备且易于与硅基基质兼容等特点。因此,有机光波导放大器成为最有发展前途的光波导器件之一。为了能够有效地在光波导器件中掺杂稀土离子,研究人员采用在稀土纳米粒子表面修饰油溶性基团,并将其掺杂在聚合物中制备有机光波导放大器。当前,面向S波段有机光波导放大器的掺铥纳米复合聚合物的制备与及发光性质的研究还处于起步阶段。在这项研究中有许多关键性科学问题需要探索解决。首先,稀土纳米粒子形貌、尺寸,铥离子及敏化剂离子的掺杂浓度以及铥离子在1.4μm处的发光性质,这些参数如何影响光波导器件在单位长度上的增益?其次,稀土纳米粒子的尺寸、表面性质、纳米粒子在聚合物中的比重及掺杂方式等如何影响其在聚合物基质中的分散程度,进而影响光波导器件的散射损耗?对这些科学问题进行探索将对S波段有机光波导放大器的制备提供理论基础。针对以上的问题,在本论文中我们开展了如下的实验工作:(1)利用高温热解法制备了分散性良好,尺寸均匀的NaYF4:20%Yb,x%Tm纳米粒子。探索了纳米粒子中Tm3+离子的掺杂比例,从0.2%、0.4%、0.6%一直增加到2.0%。利用高分辨透射电子显微镜和XRD对制备的纳米粒子的形貌、尺寸和晶体结构进行了表征;利用FTIR对材料的表面性质进行了表征;利用SPEX 1000M荧光光谱仪和示波器对纳米材料的发光性质和激发态寿命进行了测试。实验结果表明:制备的掺杂不同浓度Tm3+的纳米粒子尺寸相近,均约为11 nm,且分散性良好,晶体结构均为六角相。通过光谱手段,获得了纳米粒子在1.4μm处的下转换发光强度,随着Tm3+的掺杂浓度增加呈现先增加再减弱的趋势。找到了NaYF4:20%Yb,x%Tm纳米粒子在1480 nm处发光最强的Tm3+掺杂浓度,并通过纳米粒子的激发态能级寿命变化验证了纳米粒子发光强度减弱主要是因为Tm3+浓度升高猝灭导致的。红外吸收光谱数据表明,纳米粒子的表面被成功修饰上C=C不饱和官能团,为下一步将纳米粒子与聚合物单体共聚,为实现纳米粒子在聚合物中的化学掺杂做好了准备。(2)利用共聚法,将纳米粒子NaYF4:Yb,Tm与PMMA通过共价键镶嵌的方式链接在一起,实现了纳米粒子在聚合物中均匀、稳定掺杂,获得了无色透明的NaYF4:Yb,Tm-PMMA有机/无机复合聚合物。利用这种有机/无机复合聚合物作为增益介质,获得了在S波段能够实现光放大的有机光波导放大器。首先,在聚合反应过程中,通过调整反应温度与反应时间来改变复合聚合物的粘稠度。然后,当复合聚合物具有适宜粘度时将复合聚合物旋涂在经过ICP刻蚀的聚甲基丙烯酸甲酯凹槽中,再通过烘干处理制备出倒脊型结构的光波导器件。在长度为13mm的光波导器件中,以1480 nm的光为信号光测得1.4 dB的相对增益,这是首次在稀土NaYF4:Yb,Tm纳米晶掺杂的有机/无机复合光波导器件中获得S波段的信号增益。实验结果表明通过化学方法将稀土纳米粒子链接在聚合物基质中制备有机/无机复合聚合物有利于稀土纳米粒子的分散,减小团聚。利用这种NaYF4:Yb,Tm-PMMA有机/无机复合聚合物制备的聚合物光波导器件具有较好的光放大性能。在稀土NaYF4:Yb,Tm纳米晶掺杂的有机/无机复合光波导器件中获得S波段的信号增益,对未来利用这种有机/无机复合聚合物作为增益介质制备光波导放大器,实现全光放大和短距离通信波段的展宽具有重要研究意义。
其他文献
由于行波管把大功率和宽频带很好兼顾的特点在众多微波电真空器件中具有不可替代的地位。行波管从20世纪40年代被研制出来发展到现在已经能给出连续波千瓦级和脉冲兆瓦级的功率,它广泛应用于民用通讯卫星,医疗诊断和国防军事电子等众多领域。随着应用领域的不断扩展和应用环境的要求,大功率行波管成为了研究热点。本文主要研究了Ka波段大功率行波管,慢波结构分别采用了常规结构和过截止两种不同的设计方式,同时还设计了慢
大豆是世界上重要的油料作物之一。大豆油脂主要由五种脂肪酸组成,其中油酸、亚油酸和亚麻酸是大豆油中主要的不饱和脂肪酸,它们在预防和治疗包括某些癌症和心脏病上有一定的作用。不饱和脂肪酸的含量直接关系着大豆油品质的好坏。随着人们生活水平的不断提高,人们需要消费更多更优质的大豆油。另外大豆油作为能源物质,可用于工业生产中。因此培育高油及高不饱和脂肪酸的大豆品种是我们的一个重要的育种目标。先天性脂质营养不良
近年来,随着网络服务的多样化以及技术的不断进步,用户越来越关心数据内容本身以及获取数据的速度和安全问题,网络的通信模式逐渐演变为以内容为中心的信息共享,传统的IP网络架构已经逐渐不能满足用户的需求。在这种背景下,国内外学者开始致力于研究下一代网络体系架构,命名数据网络(NDN)作为下一代网络体系架构的代表之一,使用类统一资源定位符(URL)的数据名称代替传统网络中IP地址来进行路由。攻击者利用ND
目的探讨胰腺腺泡细胞癌(Pancreatic acinar cell carcinoma,PACC)、胰腺神经内分泌肿瘤(Pancreatic neuroendocrine tumor,Pan NET)及胰腺实性假乳头肿瘤(Solid pseudopapillary neoplasm,SPN)的临床病理特征,采用免疫组织化学方法联合检测BCL-10、Trypsin、β-catenin、CD10、P
水稻株型改良一直是高产育种的主要选择方向之一。株型是农艺性状的综合表现,主要包括株高、分蘖、叶形和穗部特征等。深入了解株型的分子调控机制有助于培育水稻高产新品种。APETALA2/乙烯反应因子(AP2/ERF)在植物界广泛存在,在植物生长发育的转录调控以及防御反应中起着至关重要的作用。本研究分离了一个未被报道过的AP2转录因子基因OsRPH1,利用生物信息学、分子生物学、生物化学等方法,开展了Os
民国时期的县政改革与社会治理,是中国现代国家政权建设的中心内容,并集中体现在各地新县政的推行与实施进程中。但由于受到地方社会环境与传统权势结构的深刻制约,这一历史进程不仅充满了复杂性,也表现出了地方化的特点。本文即以民国时期福建平潭县的县政治理为研究对象,试图通过分析民初平潭“改厅设县”以及后来推行保甲和建立参议会等重要县政事务的实际运作,探讨和揭示现代国家政权建设在这一海岛地区展开的历史特点与社
2017年12月,中国互联网用户超过7.72亿大关,互联网普及率超过55.8%,互联网金融类应用呈快速增加态势,网上支付的用户规模达到5.31亿,年增长率为11.9%,购买互联网理财产品的网
近年来,冷冻电子显微镜技术的不断发展,尤其是硬件设备如直接电子探测器的技术突破、软件算法如最大似然估计、贝叶斯思想的应用,在结构生物学领域不断有利用冷冻电镜探测得到的高分辨率结构出现。冷冻电镜具有对样品制备相对简单、样品损伤小、样品能够保持在水溶液中的状态等优点,使得探测得到结构清晰且包含分子动力学信息,成为继X射线晶体衍射、核磁共振等方法后另一广受国内外欢迎的结构生物学探测方法。经过多年发展,冷
丹麦艺术家维尔罕姆?哈默修依(Vilhelm Hammershoi,1864-1916)的绘画中呈现着一种静谧、神秘的情绪描绘,犹如一首首缄默的诗歌,向观者静静地诉说着内在的情思,正如奥地利著名
本文除引言、结论部分外,论文的主体部分分为四章。引言部分对商标性使用和与其有关的司法实践中存在争议的一些案件进行了简要叙述,并引出了本文探讨的以非商标性使用为重要内容的商标侵权抗辩制度。第一章对商标性使用的涵义进行论述。第一节先就商标的功能进行分析,再对现行《商标法》关于商标性使用的规定进行解读,最后结合商标的功能,对商标性使用的实质进行分析。第二节则将非商标性使用和合理使用、《商标法》中的正当使