基于二维材料MoTe2相变机理的人工突触模拟和光电性能研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:lixiaoliangtony
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人工智能(AI),物联网(IoT)和机器学习(ML)等领域如火如荼的发展对现代计算设备运算能力提出了更高的要求。然而,当前基于“冯·诺依曼”架构的电子计算机系统具有难以克服的效率瓶颈。在这样的背景下,受大脑启发的神经形态计算系统因具有天然的“存算一体”特性引起了科研人员极大的关注。这也使得其基本组成单元具有模仿生物突触特性能力的电子设备被广泛的研究和报道。与此同时,由于具有原子级的厚度和较低的电荷屏蔽能力,二维材料的物理特性可以通过各种刺激轻松调节,这对于突触仿真而言非常有利。除此之外,二维材料新奇的物理特性以及优异的光电特性对于研究具有功能性的生物突触仿真,诸如感光能力、听觉能力、触觉能力等具有极大的潜力。在众多二维材料体系的分支中,过渡金属硫化物(TMDCs)以其极为优异的性能被广泛关注,尤其是其丰富的晶相类型,使之在相变工程领域展现出如火如荼的发展态势。本文以TMDCs相变工程研究中的典型代表MoTe2为核心,将其相变特性与光电特性相结合展开研究工作,具体工作内容如下:首先,结合二维材料光电特性中与缺陷密切相关的持久性光电导效应,实现了基于MoTe2场效应晶体管的人工突触模拟。通过费米能级移动和电子束缚能变化解释了栅压对于器件中持久性光电导效应的影响,并基于栅压的调控作用实现了具有可重构性的光电突触晶体管。并在此基础上,实现了对生物突触特性中长期增强、长期抑制和成对脉冲增强特性更为灵活的调控,使得器件展现出对多变的神经拟态计算应用良好的适应性。随后,在实现了利用电场诱导MoTe2相变的基础上,通过综合考虑相变的内在机理和器件结构的影响,引入宽带隙材料GaSe作为介质层来控制器件有源面积,成功的实现了对器件可靠性和稳定性的优化。在此基础上,通过合适的脉冲激励调制出丰富的中间电导状态,实现了生物突触中长期增强、长期抑制和尖峰脉冲时间依赖特性的模拟,有望在可扩展且需要快速阻态切换的突触仿真设备中得到应用。最后,利用MoTe2相变前后器件沟道内有效吸光区域的变化实现了对器件光伏特性的调控,获得了多个可调节的、非易失的光伏状态。除此之外,器件具有光响应度良好、响应速度较快以及可重构等优点,表现出在“电写光读”的非易失存储设备领域的应用前景。
其他文献
随着信息技术的不断发展,数据信息越来越庞大,人们对信息传输速率的要求也越来越高。此外,全球IC设计水平的不断提高、CMOS制造工艺的飞速发展,使得芯片复杂程度、工作频率越来越高,数据位数越来越多。鉴于以上种种原因,高速数据传输接口在计算机通信技术的发展中越来越重要,甚至成为高速通信技术发展的瓶颈。在芯片间高速数据的传输中,传统的并行通信方式由于每条信号路径的延时不一样,在数GHz时钟频率时不同信号
由于通信技术以及物联网等技术的飞速发展,电子产品不断向着小型化、高集成化转变,高速信号的稳定性传输需求对印制电路板(Printed Circuit Board,PCB)的制造技术、互连技术等提出了更高的挑战。印制电路板作为电子产品中电气连接的载体,其焊点的可靠性对于信号在PCB与器件间的传输十分关键。本文基于PCB图形表面处理技术,从PCB与器件间互连焊点的角度入手,研究了表面处理技术及焊接对信号
本论文的工作是关于小分子电子-振动-自旋耦合态和分子内大幅度核振动能级的计算。这是近年来化学物理的研究热点。对于有振动和电子态相互作用的分子,波恩—奥本海默绝热近似不再成立,需要用透热模型来处理,Jahn-Teller效应和Renner-Teller效应是这样的典型例子。本文对几个典型的具有Jahn-Teller和Renner-Teller效应离子的能级进行了计算。另外,分子内的大幅度核振动,如:
随着信息技术的快速发展,印制电路板内部数据传输量呈指数级增长。由于铜导线固有的物理特性,印制电路板中的铜制导线在传输频率提升为高频情况下产生的寄生效应越来越严重,从而导致高比率的能量传输损耗。为了适应日益增长的宽带信号需求,使用光互联代替电互连是一种有效的减少损耗的解决办法。聚合物光波导作为一类波导材料,其制备工艺能与传统印制电路板制作工艺兼容,且可以通过层压集成制成光电互联板。本论文结合了光波导
忆阻器是电路中的第四种基本元件,具有尺寸小、功耗低、速度快、寿命长等优良的性能,在信息存储、逻辑运算、仿生突触、人工神经网络等领域有着广阔的应用前景。本文采用磁控溅射法和光刻工艺,基于CuAlOx及其金属Ag或Cu掺杂的介质薄膜,制备出了Ag/CuAlOx/p++-Si、Cu/CuAlOx/p++-Si、Ag/CuAlOx/ITO-glass、Ag/CuAlOx:Ag/p++-Si、Ag/CuAl
激光三维成像是一种实用的光电探测技术,属于主动成像,经过后端的信号处理实现三维成像。近年来,激光三维成像技术在汽车智能驾驶、三维人脸识别、增强现实等新兴技术领域应用广泛,同时在军事领域也有广阔的应用前景。激光三维成像技术的基本原理是通过照射激光脉冲,从探测场景中采集反射的辐射线,完成对目标的三维立体成像,以达到探测目的。本文设计了基于线性模式APD(Avalanche Photo Diode,雪崩
随着工业的发展,为顺应更为苛刻的作业环境,诞生了一批性能表现出色的特种合成弹性体。而作为一种能在高温、强腐蚀性等特种环境下作业的高性能弹性体,氟橡胶满足了普通弹性体无法胜任的特殊需求,因此在国防、工业、生活等领域受到了广泛的应用。同时,随着智能工业时代的开启,高精尖科学技术与新型智能材料开始向工业普及,严苛的作业环境对传统聚合物基功能材料发起了挑战,大部分性能优异的聚合物基功能材料无法胜任高温以及
在过去的数十年中,利用量子力学特殊的性质,人们已经在推动信息技术方面有了重大进展。经典的信息处理器已经接近量子极限,同时,对于经典图灵机来说,模拟量子系统是不可能的。在对量子信息处理的研究中,在一些问题的解决方面诞生了一些对比经典算法有重大提升的量子算法,比如大数分解和无序数据库搜索。另外,使用量子模拟器模拟量子系统也是可能的。核自旋的相干时间长,并且控制技术成熟,是最早的实现量子算法和量子模拟的
激基复合物(exciplex)因其独特的TADF(Thermally Activated Delayed Fluorescence)特性在OLED(Organic Light-Emitting Diode)领域引起广泛关注,无论是作为TADF自发光体还是主体均取得了卓越的器件性能。电子给受体材料作为形成激基复合物不可或缺的组成部分,近年来已经取得了巨大的进展。但是目前报道的电子给受体材料种类有限,
大时间带宽积的线性啁啾微波波形(Linearly chirped microwave waveform,LCMW)被广泛应用在雷达和无线通信系统中。在雷达系统中,可以通过LCMW信号进行脉冲压缩,来提高系统的范围分辨率。因此,如何产生低相位噪声LCMW信号成为研究的热点。利用光学方法产生低相位噪声的大带宽LCMW信号已经进行了大量的研究。光电振荡器(Optoelectronic oscillato