基于深度神经网络的智能车辆目标识别与学习控制方法研究

来源 :国防科技大学 | 被引量 : 1次 | 上传用户:huanhuan40705
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为未来智能交通系统的核心单元,智能驾驶车辆集自动控制、人工智能、机器视觉等多种技术于一身,是计算机科学、模式识别以及智能控制等学科高度交叉融合的产物。当前,智能驾驶车辆已成为衡量一个国家科技实力与工业水平的重要标志,不管在民用还是军用领域都已成为国内外关注和竞争的焦点。环境感知技术与运动控制技术是实现车辆智能驾驶的关键技术。然而智能驾驶车辆行驶环境的复杂多变性以及车辆自身动力学模型的高度非线性和时延性,使得在复杂环境下实现高精度的实时环境感知与高性能的运动控制成为智能驾驶领域的挑战性问题。近年来深度学习(Deep learning,DL)和深度增强学习(Deep reinforcement learning,DRL)方法的提出和发展,为解决这一问题提供了新的技术途径。但现有的深度学习和深度增强学习方法通常基于梯度下降(Gradient descent)原理进行参数优化,往往存在局部极小值难以避免、泛化能力难以保证以及由于大量的搜索和优化计算需求所导致的训练代价巨大等问题,致使面向智能驾驶车辆环境感知和运动控制的深度学习和深度增强学习方法存在适应性和高效性不足,限制了其性能的进一步提升。本文以复杂环境下智能驾驶车辆的环境感知和运动控制为研究背景,重点围绕基于深度神经网络的高精度、低训练时耗目标识别方法和面向大规模状态空间下连续动作的高效、快速学习控制方法开展研究,以提升方法性能和降低方法模型训练时耗为目标,主要完成的工作及创新点包括:(1)针对深度卷积神经网络学习过程对局部极小值敏感以及泛化能力难以保证的问题,结合深度学习和超限学习机(Extreme learning machine,ELM)原理,提出了采用深度卷积特征的超限学习目标识别方法CNN-ELM。该方法利用ELM对深度卷积神经网络全连接层进行学习优化,在充分发挥深度卷积神经网络的特征学习能力的同时,与ELM优异的分类泛化能力和快速的学习速度进行优势互补。在国际交通路标识别公共数据库上的测试结果表明,CNN-ELM能够取得99.40%的识别准确率,并且模型训练速度相比于公共数据库上具有最好识别结果的多柱深度神经网络方法(Multi-column deep neural network,MCDNN)有6倍的提升。(2)为解决复杂环境条件下智能车辆交通路标识别问题,进一步研究了颜色空间变换对深度卷积神经网络特征学习过程的影响,提出了一种采用深度感知卷积特征(Deep perceptual convolutional feature,DPCF)的核超限学习交通路标识别方法DP-KELM。该方法在深度卷积神经网络学习过程中引入感知颜色空间变换,同时采用核超限学习机(Kernel extreme learning machine,KELM)完成随机神经网络(Random neural network,RNN)分类器的学习优化,进一步提升深度卷积神经网络所提取特征的判别性和分类器泛化能力,同时减少网络训练的时间代价。在交通路标识别公共数据库上的性能对比结果显示,DP-KELM能够达到99.54%的识别准确率,模型总体训练时间进一步缩短为采用深度卷积特征的超限学习目标识别方法的六分之一。(3)提出了基于差分进化(Differential evolution,DE)的分层稀疏自编码目标识别方法ESAN,在确保识别性能的前提下进一步降低深度神经网络学习训练代价。该方法将面向随机神经网络学习优化的超限学习方法拓展到深度神经网络学习,并针对随机神经网络学习过程中由于隐层网络参数随机生成所可能带来的冗余性和次优性问题,引入差分进化原理进行搜索优化,提出一种进化稀疏自编码网络并进一步将其融入分层随机神经网络结构,实现从原始图像输入到识别结果输出的快速有效的映射学习。在多种目标识别标准数据库上的验证实验结果表明,ESAN识别性能优于堆栈自编码(Stacked autoencoder,SAE)、深度置信网络(Deep belief network,DBN)等深度学习方法,且模型训练速度有2~3倍,最多10倍的提升。(4)针对高维状态输入下连续动作空间的在线学习控制问题,提出了采用深度编码特征与小脑模型神经网络(又称小脑模型关节控制器,Cerebellar model articulation controller,CMAC)的自适应启发评价学习控制方法DeepFastAHC。为解决高维状态输入到增强学习(Reinforcement learning,RL)算法所需的低维特征映射问题,首先将深度编码网络与小脑模型神经网络相结合,在此基础上采用基于递推最小二乘TD(λ)原理的快速启发式自适应评价器(Adaptive heuristic critic,AHC)增强学习算法,最终实现以图像为输入、连续动作空间下控制策略的在线高效学习。典型学习控制问题仿真实验结果表明,DeepFastAHC具有良好的数据利用率和学习效率,学习过程能够快速收敛,得到性能效果良好的控制策略。(5)提出了采用深度卷积特征的超限学习车辆侧向运动控制方法ICNN-ELM。该方法将复杂环境下智能驾驶车辆的侧向运动控制问题抽象为高维状态输入下连续动作空间的模仿学习(Imitation learning,IL)问题。针对深度神经网络因泛化能力不足所导致的回归拟合精度受限问题,采用行为克隆(Behavioral clone)技术,在专家示教(Demonstration)数据上训练深度卷积神经网络特征提取器。随后利用超限学习机取代深度卷积神经网络的全连接层,以深度卷积特征为输入实现对控制输出的拟合回归,从而建立感知图像输入到控制动作输出的直接映射关系。在百度Apollo端到端车辆侧向运动控制数据库上的验证实验表明,ICNN-ELM能够达到比现有深度卷积神经网络方法更高的学习精度,同时所采用的网络模型更加简单。
其他文献
指出了对于球面螺旋铣刀、带角圆的螺旋铣刀不宜采用与轴线成定解的定义来设计螺旋刃口,并给出了其数学上严格证明和直观分析,为同类研究提供了借鉴。
1965年至今,发展心理学对知道感的研究不断丰富。知道感发展模式的研究更是成为了近年来研究的重点。本文回顾了知道感的发展研究。
肿瘤微环境在肿瘤生长、耐药与转移等方面起着重要的作用。巨噬细胞是肿瘤微环境中的重要组成部分,肿瘤相关巨噬细胞(TAM)的M1或M2极化分别对肿瘤起着抑制或促进作用,TAM已成
会议
氮素过量或亏缺均会对水稻的生长发育、产量乃至品质产生影响。传统的氮素营养诊断方法需要破坏性采样,费时费力,而快速无损的氮素营养诊断已经成为精准农业研究的热点问题。
社区矫正工作者的矫正理念包括工作理念、价值理念和专业理念三个层面。社区矫正工作者在对矫正对象的执行刑罚、监督管理、矫正教育、危机干预、社会救助等活动中,必须在不同
<正> 自从NVIDIA推出nFocer2芯片组以来,相应的产品越来越受到用户和厂商的关注。不仅因为它的价格已降到了可以接受的程度,也因为它全面的功能和出色的性能。当然,作为较新
传统村落是具有较丰富的历史文化与自然资源条件下,人与乡村环境之间建立的一种空间关系。本论文选取了湘中梅山区域收录进《中国传统村落名录》的传统村落进行主体研究,在对
随着综合国力日益强大,我国在越来越多的领域赢得了国际社会的认可,但国家形象却始终被有意无意地歪曲、误读。文化形象是国家形象的重要组成部分,因此,有必要从文化角度研究
随着全球城市化进程的快速推进,城市建成区面积和城镇人口比例不断上升,多中心城市成为国内外大都市为缓解城市扩张带来的社会、经济、环境压力普遍采取的一种新型城市空间发
研究背景和目的阿霉素(Doxorubicin,DOX)是一种有效的癌症化疗药物。阿霉素对心脏有一定的副作用-剂量依赖性心肌损伤,严重的导致心力衰竭,甚至死亡;这种心肌损伤的机制与能