论文部分内容阅读
Pb(Ni1/3Nb2/3O3(PNN)是一种典型的弛豫铁电材料,表现出弥散相变和介电频率色散特性,居里温度大约为-120 ℃。钛酸铅PbTiO3(PT)是一种普通铁电材料,居里温度大约为490 ℃。PNN可与PT形成连续固溶体((1-x)PNN-xPT))在准同型相界(MPB)附近显示出优异的介电和压电性能而得到广泛的研究(室温下介电常数可达到4000,陶瓷的压电常数可达到450pC/N)。但是,准同型相界(MPB)附近的PNN-PT体系居里温度较低(120℃),限制了其在高温下的应用。因此,本论文的主要工作就是以提高PNN-PT基材料的居里温度和优化电学性能为目的,研究PLN,PIN与PNN、PT形成的三元固溶体,包括陶瓷和单晶的制备及性能研究。另外,尽管铅基铁电材料具有优异的电学性能,然而铅是一种有毒的物质,它会造成环境污染和人体伤害。因此,许多课题组致力于高性能无铅铁电压电陶瓷的研究。近年来,人们发现Ba1xCaxTiO3基无铅陶瓷具有优异的电学性能,使得取代铅基陶瓷成为一种可能。例如,任晓兵等人采用固相反应的方法制得高压电常数(620pC/N)的(1-x)Ba(Ti0.8Zr0.88)03-x(Ba0.7Ca0.3)TiO3 陶瓷,其性能优于其他无铅体系。因此,本论文的另外一部分工作就是改性和优化Ba1xCaxTiO3基无铅陶瓷的性能。主要研究工作如下:第一,采用两步法生产成功制备了Pb(Lu1/2Nb1/2)O3-Pb(Ni1/3Nb2/3O3-PbTiO3(PLN-PNN-PT)三元铁电陶瓷,并表征了其结构及电学性能,讨论了 PLN的掺入对PNN-PT二元铁电陶瓷电学性能的影响。对MPB区域的PLN-PNN-PT三元陶瓷的电学性能的组分依赖性做了详细的研究。在PLN含量一定的情况下,随着PT含量的增加,PLN-PNN-PT三元体系的居里温度逐渐增加。PLN-PNN-PT三元体系表现出优异的铁电压电性能,例如MPB组分的0.30PLN-0.31PNN-0.39PT陶瓷的居里温度达214℃,剩余极化Pr为32.89 μC/cm2,矫顽场Ec为15.23 KV/cm,压电系数d33的值为366 pC/N。第二,采用两步法生产成功制备了 Pb(In1/2Nb1/2)O3-Pb(Ni1/3Nb2/3O3-PbTiO3(PIN-PNN-PNN)三元铁电陶瓷,研究了该三元体系的结构、介电、铁电和压电性能。XRD粉末衍射图谱表明该体系为纯的钙钛矿结构,不含其他杂相。研究发现,在PIN含量一定的情况下,随着PT含量的增加,PIN-PNN-PT三元体系的居里温度逐渐增加,并表现出优异的压电性能。以0.30PIN-0.33PNN-0.37PT为例,其性能如下:d33=386 pC/N,Tc= 200℃,ε’= 2692,kp=50%,tanδ = 0.045,Pr=33.5 μC/cm2,Ec= 16.09 KV/cm。采用助溶剂法生长了 PLN-PNN-PT三元铁电单晶。XRD测试结果显示该单晶为纯的三方钙钛矿相。居里温度在200 ℃左右,压电系数d33的值为800 pC/N。结果显示,PLN-PNN-PT三元晶体具有比PLN-PNN-PT陶瓷更优异的电学性能。第三,采用传统的固相合成工艺成功制备了(1-x)Ba0.7Ca0.3Ti03-xBiSc03无铅压电陶瓷,并对其介电、铁电和压电性能的组分依赖性做了研究。随着BiSc03含量的增加,其居里温度并没有随之增加,反而随之减小。这可能是由于Bi3+取代Ba2+,形成的缺陷导致的。