论文部分内容阅读
随着分析化学和生物工程技术的交叉融合,以微生物细胞(或其它天然生物材料)作为固相吸附剂的生物富集/细胞萃取越来越引起人们的关注。丰富的生物细胞种类,细胞表面多样化的功能基团(氨基、羟基、巯基、羧基、醚基等)以及不同细胞表面基团的差异为选择性分离富集目标组分提供了巨大潜力。因此以生物材料为固相载体,研究生物富集机理和吸附动力学以提高分析性能,在分离富集重金属离子及其形态分析中具有重要意义。生物富集/细胞萃取是一种新兴的固相萃取样品预处理手段,其在元素分离分析领域中的应用尚处于起步阶段。传统的静态或振荡吸附方式,样品试剂消耗量大、生物资源浪费严重,繁琐的操作过程也严重影响分析结果的精密度及准确度。流动/顺序注射分析系统在试样引入及样品处理规模上大大优于手工法,为固相萃取的自动化、微型化、在线化提供了良好的技术平台。结合微珠注射技术,在第三代流动注射分析技术-阀上实验室系统中引入可更新表面技术不仅可以实现活性细胞在线微柱萃取,而且有望实现有毒元素生物累积过程的在线检测和监测。本论文的目的是研究不同生物材料对重金属元素的吸附性能,探讨内在和外在因素对吸附表现性能的影响、了解目标组分吸附过程中的形态转化和吸附机理;并与流动/顺序注射分析系统相结合,建立生物富集/细胞萃取分离富集痕量元素及形态分析的在线固相微萃取过程及定量检测方法。本论文的第一章讨论了生物富集/细胞萃取金属组分的研究现状。第二章将小球藻和酵母细胞混合固定化在硅胶表面为吸附剂,以此制成微填充柱,采用顺序注射-电热原子吸收(ETAAS)联用技术实现了痕量Cd2+的在线分离富集及检测。通过考察内在因素对吸附性能的影响,不同种类细胞可提供多样化的有效官能团,从而大大提高了Cd2+的吸附效率。在进样体积为1.0 ml的条件下,方法的线性范围为0.005-0.2μg1-1,Cd2+的富集倍率为38.6,检出限为1.0 ng1-1(3σ,n=11),相对标准偏差为2.3%(0.05μg 1-1,n=9)。第三章以顺磁性离子Cr3+和Mn2+为研究对象,考察外在因素—磁场对细胞萃取重金属离子的影响。由于外界磁场阻滞了顺磁性离子按原有方向的迁移从而增加了目标离子与有效位点的接触时间,使其吸附效率得到了显著提高,Cr3+的吸附效率由60%(非磁场)增加到90%,Mn2+则由45%增加到80%,从而提高了分析方法的灵敏度。将所建立的方法用于环境水样中痕量Mn2+的分离富集,进样500μl时,富集倍率为21.2,检出限为8.0 ngl-1(3σ, n=11)。标准物质SLRS-4中Mn的测定验证了此法的准确性。本研究为顺磁性和反磁性离子的分离分析提供了途径。第四章以天然生物膜—鸡蛋膜为吸附剂,研究了生物富集对不同形态铬的选择性和吸附过程中发生的形态转变,并采用分光光度法及电热原子吸收法检测证明了由Cr(Ⅵ)到Cr(Ⅲ)的转化。基于鸡蛋膜对Cr(Ⅵ)的选择性吸附,建立了环境水样中铬的形态分析方法,可对浓度在0.05-1.25μg1-1。范围内的Cr(Ⅵ)进行准确定量测定,方法的检出限为0.01μgl-1 (3σ, n=11)相对标准偏差为3.2%(0.5μg-1, n=9)。论文第五章结合微珠注射技术,将可更新表面活性HeLa细胞引入到阀上实验室系统中,研究其对痕量As(V)和As(Ⅲ)的生物富集性能。通过对吸附及解吸过程的研究,确定了As在活性细胞表面的吸附是生物吸附和生物累积的结合。采用ETAAS为检测手段,建立了无机砷的在线分析方法。当样品消耗量为450μl时,检测As(V)的线性范围为0.15-2.5μg1-1,检出限为0.05μgl-1 (3σ, n=11),富集倍率为11。