2 μm波段大能量脉冲掺铥光纤激光器研究

来源 :宁波大学 | 被引量 : 0次 | 上传用户:michaelwf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
2μm大能量脉冲激光器在生物医学、材料加工、光通信和国防等领域具有广泛应用。特别地,全光纤化的2μm大能量脉冲激光器结构紧凑且稳定性好,已成为激光领域的重点研究对象。目前,2μm脉冲激光主要通过调Q技术和锁模技术来实现。在调Q技术中,基于低维纳米材料的被动调Q技术因其制备简便、成本较低受到广泛关注,但材料本身往往存在严重热累积效应,使得输出脉冲能量受限。本文采用Bi2Se3作为可饱和吸收体,通过腔体优化降低了照射在材料上的光强,得到的脉冲可从1935.42 nm连续调谐至2048.85 nm,脉冲最大平均输出功率高达195 m W,最大单脉冲能量可达约3μJ。在锁模技术中,主动锁模使用的主动调制器件结构复杂、成本较高,且对环境变化敏感;被动锁模一般利用可饱和吸收体或非线性效应,前者漂白阈值较低,不适合用于大能量脉冲,后者往往对偏振态敏感,且为维持较强非线性效应往往需使用较大泵浦功率。近年新兴的模间拍频锁模技术,是一种不需锁模元器件的自锁模技术,使腔体更为紧凑的同时减小了损耗,有利于实现大能量脉冲输出。本文将模间拍频锁模技术应用在掺铥光纤激光器中,实现了1964 nm、1983 nm、2003 nm和2056 nm锁模脉冲输出,脉冲平均输出功率均大于97 m W,单脉冲能量均大于10n J。特别是在1983 nm锁模光纤激光器中,实现了平均功率高达1.03 W,单脉冲能量为106.8 n J的高性能脉冲。本论文结构如下:第一章介绍2μm脉冲激光器的研究背景和意义,调研了国内外关于2μm脉冲光纤激光器的研究进展,并说明本文的主要工作内容。第二章介绍包层泵浦技术、调Q和锁模技术的相关原理,并对实现方式进行了归纳,随后描述了模间拍频锁模的工作原理,还介绍了光纤中光脉冲传输理论,对脉冲激光器有了较为深入的了解。第三章主要介绍基于Bi2Se3的2μm调Q光纤激光器。通过优化输出耦合比和腔内损耗,缓解了低维纳米材料热积累严重的问题,获得了平均功率可达195m W的脉冲输出,最大单脉冲能量高达2.96μJ。此外,利用可调谐带通滤波器,使输出脉冲可从1935.42 nm连续调谐到2048.85 nm,覆盖约113 nm的宽波长范围。第四章详细介绍基于模间拍频锁模技术的掺铥锁模光纤激光器。通过使用三种不同波长光栅和自由振荡方式,分别实现波长为1964 nm、1983 nm、2003 nm和2056 nm的锁模脉冲输出。这些脉冲的输出平均功率均大于97 m W,单脉冲能量均大于10 n J。在1983 nm脉冲激光器中,通过优化输出耦合比,其平均功率达到了1.03 W,单脉冲能量高达106.8 n J。第五章总结了本文现阶段已取得的实验成果,并对现阶段的不足进行总结分析,对未来工作进行展望。
其他文献
随着云计算、人工智能、5G等技术的飞速发展,全球数据存储量不断扩大,对存储器的存储密度提出了更高需求。相变存储器(PCRAM)因其具有读写速度快、功耗低、可实现多级存储并且有良好的兼容性等特点,被认为是下一代最有前景的新型非易失性存储器之一。但是传统的相变存储器在存储尺寸和存储密度等技术方面发展上遇到瓶颈,而新型三维堆叠存储器(3D X-point)因采用存储单元(OMS)与阈值选通单元(OTS)
学位
对比于低动态范围(Low Dynamic Range,LDR)视频,高动态范围(High Dynamic Range,HDR)视频具有更宽广的亮度范围和更丰富的色彩层次,因此,HDR视频受到了广泛的关注。与此同时,HDR视频的版权问题也越来越令人担忧,然而目前针对HDR视频的水印算法还比较少。因此,本学位论文以保护HDR视频的版权为出发点,根据HDR视频的特点,对HDR视频的鲁棒水印算法进行了相应
学位
自21世纪以来,通信技术的不断发展让社会生产力不断提高,社会生产力对通信速率的要求也越来越高,运用传统的电子器件处理信息的方式已经不能满足当前的通信效率,光子晶体的出现对于全光网络的发展具有重要意义,利用光子晶体设计的光学器件能够达到控制光波传输的目的,有效的解决了电子器件通信能量损耗较大的问题,提高了信息传输的效率。本文利用光子晶体集成度高和拥有光子禁带等特性设计了分解器和出射端结构,利用物理学
学位
近年来,随着能源的需求及消耗不断增加,节能与环保受到各国的重视。其中电致变色器件由于在外电场的作用下对光热辐射具有可调节的特性,在智能窗、防眩光后视镜、车窗以及显示器等方面有着广泛的应用,成为国内外研究的热点。电致变色器件典型结构为透明导电层/电致变色层/电解质层/离子储存层/透明导电层。在上述结构中,离子存储层材料通常为氧化镍(Ni Ox),该材料具有阳极电致变色特性,在器件中可作为传统阴极电致
学位
超表面的外在手征是由超表面与斜入射光线共同构成引起的,与手征超表面具有相同的特性,如圆二色性和旋光性、不对称传输、负折射率等,从而引起了人们极大的研究热情。自然界的天然材料只具有相对较弱的圆二色性和旋光性,并且人们制造的一些超材料结构复杂,体积过大,不容易集成在纳米光学系统中。而这些具有外在手征特性的超表面,结构简单,可以通过改变入射角来调节电磁特性,具有比天然材料高几个数量级的电磁性质。目前,人
学位
随着现代通信网络及数据传输的飞速发展,现有的通信波段将很快用完,研究发展新的通信波段——U波段(1.66μm附近)迫在眉睫。拉曼光纤激光器具有结构简单、光束质量好、激射波长灵活可调且光转换效率高等优点,只要选用恰当的泵浦光源和非线性介质理论上就可以实现任意波长拉曼激光输出,这将为光纤通信系统提供新波长的光源。本论文的研究工作就是针对拉曼光纤激光器,对1.66μm连续拉曼光纤激光器进行了相关理论数值
学位
目前,毫米波雷达因其探测精度高、高分辨率、环境适应性好而被广泛应用于军用和民用的多个领域。天线是毫米波雷达中的重要系统组件,对于接收和发射电磁波信号具有关键性作用。随着毫米波雷达的快速发展,对于能够实现低剖面,高增益,低副瓣,窄波束,多波束的天线需求日益增多。另一方面,单脉冲天线经常被应用于探测目标方位,因此在毫米波雷达系统中也具有很高的研究价值。本文主要研究方向是毫米波平面高增益天线阵和单脉冲天
学位
2-6.5μm全光纤中红外超连续谱光源作为一种新型的激光光源,光谱覆盖重要的大气窗口,具有高亮度、高紧凑性以及热管理方便等优点,在军事和民用领域都有非常重要的价值。随着新型材料开发、特种光纤制备及高功率光纤激光等领域的不断发展,全光纤中红外超连续谱光源在输出功率、光谱宽度等方面取得了重大突破。近年来,已报道的基于氟化物光纤的中红外超连续谱光源稳定输出功率已达几十瓦。然而,受限于氟化物光纤材料的本征
学位
偏振光在理想的偏振光纤中传输时能够一直保持偏振态不变,而且偏振光纤可以有效地减小偏振模色散,从而提高偏振态调制系统的稳定性,这使得偏振光纤在航天、军事等一些需要使用偏振态调制系统的应用领域中具有广泛的适用性。目前石英光纤已经大量应用于各种偏振器件,氟化物光纤仅有椭圆芯保偏光纤工作在近红外区域,而在中远红外区域内关于偏振光纤的研究仍处于起步阶段,主要集中于对硫系光子晶体光纤的模拟仿真。其难点在于硫系
学位
相变存储器(PCM)已被公认为下一代最具前景的新型非易失性存储技术之一,因其有着较快的存储速度、较高的存储密度、可重复利用以及多值存储等诸多优势。PCM是利用相变材料在非晶态和晶态之间较大的电学性质差别来实现数据存储。相变材料的性质决定了PCM的性能,其性质优化是PCM研究的热门之一。目前,Ge-Te基及Sb-Te基相变材料因综合性能较平衡,是研究较多、发展快速的相变存储材料体系。实际应用中,Ge
学位