基于小波与自适应滤波的心音降噪算法研究和便携式听诊器设计

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:romme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
心脏疾病一直以来都是威胁人们生命的关键问题,心音听诊作为心脏检查的基本手段,在心脏疾病预防、诊断及治疗上发挥着巨大的作用,传统心音听诊器功能简单,没有降噪处理和分析功能,主要依赖于医生的人工判断。近年来,随着人们日益增长的心脏健康检测需求,适用于医疗的便携式智能听诊关键技术成为了广大学者的研究热点。本文针对便携式智能听诊器的应用场景,进行了心音降噪算法研究改进和便携式听诊器样机实现。心音信号十分微弱,易受到各种噪声干扰,要面向医疗应用,需对环境噪声、电路干扰等噪声进行有效抑制。本文首先研究了主流的心音降噪算法,其中小波阈值降噪具有较低的算法复杂度和较好的降噪效果,但是对环境噪声效果不足,而自适应滤波通过采集环境噪声作为参考噪声,可以有效抑制信号中的环境噪声,但是其对与参考噪声无关的噪声降噪能力较差,因此,本文将小波阈值降噪和自适应滤波结合,基于双麦克风结构,改进了心音降噪算法;另外,已有便携式听诊器受面积功耗影响,资源有限,性能不足,基于嵌入式处理器的降噪算法软件实现方式,难以保证心音降噪的效果与实时性,因此,本文接下来设计了心音降噪算法的So C架构,对降噪算法进行了硬件电路优化与设计,核心运算模块采用了流水线结构,完成了心音降噪算法的硬件电路设计实现和仿真。在完成电路设计仿真后,本文基于HHGRACE 110nm CMOS工艺,完成ASIC资源评估,心音降噪算法的电路总面积为10058598)~2,总功耗为2.5830m W,满足便携式设备的资源和功耗要求;然后,基于FPGA平台,本文增加了模拟前端设计,完成了便携式智能听诊器的样机设计。最后,基于该样机,本文对降噪算法的性能进行了评测:本文硬件实现降噪算法,可以有效提升输出心音的信噪比,提升可达10.32d B,和相关文献对比,本文算法在降噪效果上具有明显优势;另外,基于专业的听诊器测试平台,对实现的便携式听诊器,本文进行了实际听诊测试,并与美国3M的便携式听诊器进行相关指标对比,结果表明,本文实现的样机降噪效果优良,面积得到明显减少。
其他文献
类脑人工突触是一类能够模拟生物突触的微观结构和钙离子输运过程,实现脑神经突触生物学行为的电子元器件。在众多二维材料中,过渡金属硫化物被广泛应用于生物突触可塑性功能的模拟。本文以典型的过渡金属硫化物材料二硒化钨为研究对象,基于不同忆阻机理制备了两种三端晶体管类脑人工突触器件,具体工作内容如下:首先研究了基于不同厚度二硒化钨同质结制备三端晶体管类脑人工突触器件,在二硒化钨不同厚度区域实现n型和p型调控
学位
传统纳米光子学器件的逆向设计具有挑战性,通常耗时久、计算成本高。通过将粒子群算法(PSO)与神经网络结合,可以得到一种高效且快速的算法对纳米光子学器件进行逆向设计优化。首先,训练好的神经网络可作为仿真软件的替代工具;其次,利用粒子群算法作为求解优化问题全局最优解的工具。本文通过逆向设计一维(1D)和二维(2D)结构八木天线的远场散射谱,得到其对应的物理结构来阐述验证该组合算法的具体实现。值得提出的
学位
折射率传感提供了一种无标记、低成本的单纳米颗粒检测方案。提高光腔的品质因子或者压缩模式体积能够促进光和物质相互作用,进而提高折射率传感器的灵敏度。等离激元传感器的模式体积打破了衍射极限,已被广泛地用于增强光和物质的相互作用。由于亚波长纳米孔的透射光强对于局域折射率的变化非常敏感,基于金属纳米孔结构的等离激元传感器为检测单个纳米颗粒以及包括病毒、蛋白质、核酸和其它生物粒子提供了一种灵敏的,低背景的无
学位
光是一种包含多维信息的电磁波,其光强、相位和偏振参量都携带大量信息。其中,光强可以由相机进行捕捉,简单且高效;但对于偏振和相位,其探测系统一般结构复杂,且只能探测单一的参量,不能满足现代光学探测系统的集成化发展需求。近年来光学前沿领域的超表面光学器件以其轻量性的特点和对光参量的灵活调控,为光束的相位和偏振等多参量同时探测提供了一种新的思路。本论文主要围绕基于偏振敏感超透镜阵列的多参量探测系统进行了
学位
微环谐振腔克尔光学频率梳技术的出现,为光学频率测量、光芯片集成、相干光通信等提供了可靠的解决方案,因此如何在微腔中生成光频梳吸引了广泛的关注。耦合微环谐振腔结构由于在原本的单个微腔的基础上增加了一个自由度,带来了诸如宇称时间对称、非厄米奇异点、模式耦合等更为丰富、复杂的物理学机制与现象,具有巨大的研究潜力,特别是其在微腔光频梳领域中的应用亟待探索。本论文从耦合微环谐振腔这一非厄米系统出发,提出了一
学位
声镊作为一种新兴的工具,它利用声波与固体、液体和气体的相互作用,用于在大范围内精准、无接触地操控多尺度(从纳米级到毫米级)下的微粒或细胞,是一种具备非常广阔应用前景的技术。尤其在肿瘤异质性等精准医学领域的研究中,由于细胞具有高度的异质性,仅靠对细胞群表现的平均信号研究不足以准确分析单个细胞;因此,对单细胞实现精准定位显得尤为重要。传统的声镊技术利用驻波声场产生声势阱,但由于驻波声场难以被多样性调控
学位
随着智能手表、手环和无线耳机等可穿戴电子产品的小型化、低功耗发展,对电源管理芯片提出了更高的要求。全集成转换器由于移除了体积庞大的片外LC,极大地节省了布板空间,同时降低了设计成本,已成为学术界与产业界的研究热点。结合可穿戴设备的应用需求,本文围绕全集成升压转换器的转换效率和响应速度展开研究。基于低电感电流、小纹波的改进型KY升压拓扑,提出了一种带瞬态增强的自适应恒定导通与关断时间(ACOOT)控
学位
作为AC-DC变换器的重要组成,Boost功率因数校正(PFC)变换器能够降低电流谐波,提高电能利用效率,使得产品符合IEC-61000-3-2等工业标准,因而广泛应用于现代电子设备中。根据电感电流的连续性,Boost PFC变换器的工作模式可分为断续导通模式(DCM)、临界导通模式(CRM)与连续导通模式(CCM)。为了满足宽负载输出的需求,以及打破单一模式在应用中的局限,本文对混合导通模式Bo
学位
近年来,人工智能的不断发展带来了海量数据,数据的识别、处理与存储在当今时代尤为重要,电子器件的不断更新与发展为海量数据的处理提供了强大的助推力。然而,随着摩尔定律逐步接近极限,依靠减小器件尺寸来有效提升器件性能的方式越来越难以满足要求。自旋电子器件作为一种新型电子器件,具有低功耗、高速度、非易失性等诸多优点,在许多领域都展现出极大的应用潜力,如磁随机存取存储器、忆阻器等。自旋轨道力矩效应是自旋电子
学位
近年来,随着无人驾驶、智能机器人、遥感图像等领域的迅速发展,卷积神经网络(Convolutional Neural Network,CNN)算法在图像分类、目标检测、特征提取等方面以极大的优势得到了广泛的应用,取得了令人瞩目的成果。如今,鉴于边缘设备的数量逐年快速增长以及CNN模型的复杂化,云端无法实时有效处理所有边缘设备的CNN计算,CNN计算过程向边缘设备转移。但是边缘设备在CNN计算方面存在
学位