【摘 要】
:
联邦学习作为当下人工智能技术的热点,可以解决“数据孤岛”问题。然而,现有的联邦学习方案面临一些问题,例如,如何保证上传的模型更新的隐私,如何避免不可靠的模型更新,以及如何鼓励参与者贡献他们的资源。为了解决这些问题,本文制定了相应的设计目标,提出了一种隐私保护的评估机制来选择可靠的模型更新。考虑到参与者不可能无条件的贡献自己的资源参加联邦学习,本文制定了相应的设计目标,设计了一种基于强化学习的公平激
论文部分内容阅读
联邦学习作为当下人工智能技术的热点,可以解决“数据孤岛”问题。然而,现有的联邦学习方案面临一些问题,例如,如何保证上传的模型更新的隐私,如何避免不可靠的模型更新,以及如何鼓励参与者贡献他们的资源。为了解决这些问题,本文制定了相应的设计目标,提出了一种隐私保护的评估机制来选择可靠的模型更新。考虑到参与者不可能无条件的贡献自己的资源参加联邦学习,本文制定了相应的设计目标,设计了一种基于强化学习的公平激励机制对参与者进行激励。其主要工作如下:1.提出了隐私保护和可靠的联邦学习方案。针对参与者可能上传不可靠的模型更新影响联邦学习全局模型性能的问题,设计了一种基于参与者模型更新相似性的无损隐私保护评估机制。根据该机制,提出了隐私保护和可靠的联邦学习方案(PPRFLS)。PPRFLS采用双服务器架构,由聚合服务器(AS)和平台服务器(PS)组成。PPRFLS使用CKKS同态加密方案实现参与者本地模型更新的隐私保护,使用OPTICS算法和基于模型更新质量的加权聚合算法设计隐私保护的评估机制。该机制用于评估模型更新的质量,并根据评估结果聚合可靠的模型更新得到可靠的全局模型。由于内外部攻击者都不能从参与者那里获得原始模型更新,PPRFLS保证了模型更新的隐私性。通过性能评估和实验分析,证明了PPRFLS选择可靠模型更新生成可靠全局模型实现了可靠性目标。2.提出了隐私保护、可靠和公平的联邦学习方案。在现实中,参与者在本地进行模型训练时,会消耗计算资源。因此没有合理的报酬,参与者将不愿意为联邦学习任务贡献自己的资源。而隐私保护和可靠的联邦学习方案并没有考虑上述情况。因此,在隐私保护和可靠的联邦学习方案的基础上,设计了一个改进方案——隐私保护、可靠和公平的联邦学习方案(PPRFFLS)。该方案基于Deep Q Network(DQN)的公平激励机制,利用深度卷积神经网络(CNN)压缩学习状态空间,并估计每个支付的Q值。在不需要本地隐私信息的情况下,PPRFFLS能为每个群提供公平的支付,这意味着参与者不能通过欺骗PS获取更高的支付,实现了激励公平性。通过性能评估和实验分析,证明了PPRFFLS可以保证联邦学习参与者激励公平性,激励参与者上传可靠的模型更新,使PS获得更高的效用。
其他文献
甲烷无氧偶联(NOCM)是催化领域的重要课题,为甲烷的直接利用开辟了新途径,因其碳原子利用率高、工艺流程短而倍受关注。目前,NOCM反应仍面临着甲烷转化率低、反应温度高、催化剂稳定性差等问题。近年来,熔融液态金属催化剂因其优异的抗积炭性能在多相催化领域引起广泛关注。体相金属W具有高活化甲烷能力但易积炭,低熔点In可大幅减低W的熔点而使其以单原子和/或原子簇的形态存在,进而有可能构建低温高活性、低生
农村居民点是一定规模农村人口根据自然、社会、经济条件及血缘关系集中进行生产生活的场所,其形态受自然、经济社会和政策调控综合影响。伴随新农村建设、新型城镇化和城乡统筹等重大战略的深入推进,中国农村居民点正在不断转型与重构,出现了乡村人口流失的同时农村居民点用地面积反而不断增多的悖象。建设用地扩张势必导致乡村生产空间与生态空间遭受挤压,加剧乡村功能空间结构失衡,引发三生功能产生矛盾冲突,带来生态环境退
在高维情形下关于多元正态分布协方差矩阵的估计一直以来都是统计学中的基础问题。在诸如异常心电图分析这样的实际问题中,我们得到的高维数据只有几个分量是脉冲的,其余分量全是稀疏的。本文将此情形下所对应的协方差矩阵称为Sparse-Spike协方差矩阵。在高维数据处理问题中我们得到的样本数常远小于矩阵维数,本文将小样本情形下对于协方差矩阵的估计和特征提取称为它的低秩学习。本文所研究的Sparse-Spik
商圈是一个城市的商业招牌,也在一定程度上反映了当地经济发展的水平。商圈分析可以帮助国家和地方政府了解商圈发展态势,为制定商圈发展规划和政策导向提供科学依据。另外,商圈分析还能为经营者选择经营场所、制定和调整经营方针和策略提供依据。基于以上背景,本文以上海市商圈为研究主体,基于银联数据,采用统计学方法,对商圈客户转移消费问题进行了深入分析。由于商圈之间的客户转移数量是一个矩阵数据时间序列,并且某些商
相较于单臂机器人,双臂机器人拥有冗余的自由度,能够执行更灵巧的操作和完成更复杂的协同任务。双臂机器人在进行灵巧操作时,末端执行器之间的距离往往非常接近,在对双臂协作机器人进行轨迹规划时,要求提供十分精确的碰撞检测算法,以保证机械臂的安全。针对上述问题,本文对面向双臂协作机器人的连续碰撞检测算法进行研究,主要研究内容为:·提出了一种面向双臂协作机器人灵巧操作的连续碰撞检测算法,该算法基于泰勒模型在机
近年来,深度神经网络在许多分类任务中已经达到了很高的准确率,这些任务包括语音识别,目标检测以及图片分类等。尽管深度神经网络对随机的噪声是具有鲁棒性,但是当对神经网络输入添加一些不能被人眼察觉的特殊扰动会使得深度神经网络模型输出错误的预测值。通常把这些添加了特殊扰动的样本称作对抗样本。为了使得深度神经网络的鲁棒性提升,对于深度神经网络防御对抗样本的方法进行了研究。在对抗防御的方法中包括三种:梯度遮蔽
随着信息技术的发展,图作为一种便捷且有效的建模方式,被广泛用于表示复杂的结构化数据。异常节点检测是图分析领域中的重要课题,在诸如社交网络的恶意账户检测,金融网络的欺诈检测等现实生活中有着广泛的应用。图异常节点检测场景的数据往往具有复杂的拓扑结构关系,传统领域的异常检测方法难以处理复杂的关系,此外,信息多元,标签不平衡等特点也造成现有的异常节点检测算法在性能上不尽如意,影响异常检测任务的表现。为了高
现代人们大部分时间都在室内环境中度过,例如家庭、办公室、购物中心、大学、图书馆和机场。然而,很多现有的基于位置的服务都只针对室外空间而设计,这主要是因为全球定位系统等定位技术无法准确识别室内场馆的位置。然而近年来室内定位技术的突破开始逐渐克服了这一难题,为研究机构、政府机构、技术巨头和有进取心的初创企业带来了巨大的未来机会——可以充分挖掘室内基于位置的服务的潜力。因此,室内数据管理在过去几年中获得
密度聚类被广泛用于模式识别、信息检索、图像分析、复杂网络分析等众多领域来识别真实世界数据集的隐藏结构。目前的密度峰算法往往只能处理结构化的完整数据,很多情况下表现不佳。其一,现实世界中的数据往往存在缺失或错误值,对于这样的不完整数据集,目前的处理方法是进行数据插补,然后采用传统聚类方法进行处理,这样导致精度下降,并且插补后的点的‘聚集现象’可能导致密度峰聚类失效。其二,对于更常见的半结构化数据,往
点云可用来描绘物体在三维空间中的形状,被广泛应用于自动驾驶、质量检测、结构可视化以及动画渲染等领域。随着深度学习技术的发展,人们逐渐将视角从二维视觉转向三维视觉,点云由于能够最大限度地保留物体的几何信息,因此成为研究该问题的首选。近些年来,在大规模三维点云上展开的深度学习工作已经取得了巨大的进展。然而,点云中专门面向小目标的语义分割仍然是该领域的挑战之一,许多问题亟待解决:(1)小目标所承载的语义