受载煤体损伤过程微电流效应及其机理研究

来源 :中国矿业大学 | 被引量 : 0次 | 上传用户:wensiuu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
煤炭在未来相当长时间内依然是我国最重要的能源资源。煤炭开采会伴随冲击地压、煤与瓦斯突出等煤岩动力灾害,严重影响煤矿安全高效生产。采动影响下煤岩体应力增加、变形加剧和损伤积累是动力灾害的主要原因,因此,煤岩动力灾害预测实际上是对煤岩体应力、变形和破裂的监测。前期研究表明,受载岩石能够激发出微电流信号,但对受载煤体微电流效应鲜有研究,缺乏相应的理论基础。基于此,本文紧紧围绕受载煤体损伤微电流效应及其机理关键科学问题,采用实验室试验、理论分析和现场测试等手段,重点开展受载煤体损伤过程微电流效应及响应规律、基于微电流效应的煤体损伤演化规律及能量转化关系、煤体损伤微电流产生机理及模型等研究,并进行现场验证。主要结论如下:建立了受载煤体微电流测试系统,开展了原煤单轴加载、集中加载和冲击加载试验,分析了煤体受载过程微电流的方向性及响应规律,研究了不同变形阶段微电流与煤体力学行为之间的定量关系。结果表明:煤体在不同加载方式下均能产生微电流,且由应力集中区流向非应力区;微电流大小与煤体力学行为(应力、应变、应变率、应力降等)紧密相关,但在不同变形阶段,微电流与力学行为的定量关系存在差异;塑性变形阶段,微电流呈加速增加趋势,并于破裂时达到峰值;应力降的出现伴随微电流突增(异常),且电流增幅与应力降成正比,即电流异常程度与煤体破裂程度正相关;煤在冲击载荷下能够产生瞬变电流,其大小随冲击速度的增加而增加。研究了恒定应力下微电流衰减规律,基于非广延统计力学(Tsallis熵)研究了电流衰减的非广延性。结果表明:在恒定应力下或应力撤去后,微电流以指数形式衰减,最终趋于稳定,稳定电流随恒定应力线性增加;应力的存在能够降低微电流衰减的速率和程度;微电流衰减具有非广延性,非广延参数q大于1,且无应力作用下微电流衰减的非广延程度高于应力作用下;非广延参数q随应力水平呈先增后减的趋势,可利用q值评价煤体所处的应力水平。建立了基于微电流效应的煤体损伤变量解析表达,研究了煤体受载破坏过程的损伤演化规律,构建了基于累计电荷的煤单轴压缩一维损伤演化方程及本构模型;研究了应力扰动过程及蠕变过程耗散能密度和电流能密度的变化规律及二者之间的定量关系。结果表明:定义的基于“归一化”累积电荷量的损伤变量能够较好地反映煤体损伤演化过程;煤在扰动载荷下能够产生脉动直流电,其幅值随扰动应力的幅值线性增加;在静应力恒定的扰动载荷下,电流能密度随耗散能密度线性增加;恒定应力下煤体发生蠕变,蠕变速率和程度均随应力水平的增大而增加,蠕变过程电流能密度随耗散能密度呈负指数函数形式增加。研究了微观尺度下煤表面电荷的分布规律并建立相应物理模型,从宏微观结合的角度揭示了煤体损伤过程微电流产生机理及衰减机制,建立相应物理模型对电荷转移和微电流产生过程进行描述,并建立数学模型对电荷密度表达式进行推导。结果表明:受载煤体的载流子主要为自由电子,其分布具有尖端效应,即电荷趋于向裂纹尖端富集,越靠近尖端电荷密度越大;受载煤体损伤过程微电流的产生机理是煤体中自由电荷在尖端效应和扩散作用下的积聚与释放,变形过程由于电荷扩散形成扩散电流,破裂过程则是由于积聚电子的瞬间释放形成发射电流;微电流大小取决于应变、应变率、电荷密度及电荷密度变化率,而电荷密度又是关于应变率的函数,使得不同变形阶段微电流的主导因素不同;微电流的衰减过程本质上是载流子的弛豫过程,该弛豫是相界面电场边界的存在而产生的结果,微电流弛豫时间与应力水平有关。自主研制了矿用微电流监测仪,在煤矿回采工作面开展了现场试验,研究了回采过程微电流空间分布规律及时域演化规律,确定了基于微电流响应的矿震前兆信息,验证了利用微电流法监测预警煤岩动力灾害的可行性。结果表明:巷道围岩微电流大小分布与应力分布具有一致性,微电流从巷帮沿向煤体深出表现出先增加后减小然后趋于稳定的变化规律;微电流对工作面推进过程响应较好,整体呈现阶梯型增加的趋势,在煤层回采期间,微电流呈逐渐增加的趋势,在停采期间,微电流处于稳定波动状态;微电流能够对矿震事件提前响应,微电流的加速增加可作为矿震/煤体破坏的前兆特征;微电流法具有抗干扰能力强、响应灵敏、灾害预警超前性好等优点,应用前景广阔。本文研究成果能够为煤岩动力灾害监测预警提供新思路和新方法,对促进煤岩体应力监测、稳定性评价和煤岩动力灾害预测等具有理论意义和实践价值。该论文有图108幅,表23个,参考文献220篇。
其他文献
煤炭气化是煤炭高效与洁净转化的关键技术和重要源头,气化细渣黑水是煤气化过程的产物。气化细渣的有效脱水能够实现水资源的回收、降低滤饼处理成本并改善厂区环境,符合我国循环经济的政策要求。因此,开发高效率、低能耗的气化细渣脱水技术是亟需解决的科学问题,研究内容如下:(1)探究了气流床煤气化细渣独特的物理化学性质与水分的赋存模式的交互作用。发现气化细渣界面结构复杂,包括残碳和灰颗粒两部分且至少四种共存模式
随着物联网和人工智能等新兴技术和应用模式的快速发展,人类社会所获得数据的属性(或称特征)规模正以前所未有的速度增长。这其中,冗余和不相关特征的存在不仅会降低算法的学习速度,而且将明显影响其准确度。特征选择的目的是,从数据集的所有特征中选出部分特征构成一个最优特征子集,在减少学习代价的同时使设定的性能指标达到最优。然而,在处理高维数据时,现有大部分进化特征选择方法依然存在“维数灾难”和计算代价高等问
砌体结构在地震等自然灾害中具有较大的易损性,加固是提高其安全性的有效措施之一。纤维编织网增强混凝土(Textile-Reinforced Concrete,TRC)是一种连续纤维增强水泥基材料,具有良好的力学性能和耐久性能,且与砌体材料具有较好的适应性,在砌体结构加固领域具有广泛的应用前景。本文采用试验、理论和统计分析相结合的方法,从界面、构件两个层次对TRC与砖砌体界面黏结性能、TRC约束砖砌体
本文用小模型试验来模拟台阶爆破,通过采用不同的装药结构和起爆网路,对比分析了爆破后运动岩块之间的相互挤压碰撞作用对爆破块度分布的影响.模拟试验结果表明,运动岩块间的挤压碰撞作用是影响爆破块度分布的一个重要因素,尤其对于质量较差的岩石,并得出一些有益的结论.
随着城市化进程的加快,电缆在城网配电线路中所占的份量越来越重,已逐步取代了架空线路。电缆工作环境恶劣,容易受到外力、潮气、污染、内部缺陷等因素影响而发生故障。故障精准、可靠定位有助于加快故障查找速度、提升运维检修效率、保证供电安全和可靠性。然而,实际城市配电网短线路分支众多,配电电缆内部结构复杂、故障类型多样、电气特征多变,给故障定位带来极大挑战。现有方法仅能实现金属性接地或短路等严重故障的区段定
在实验室中进行了以冻结沙土为原形模拟立井表土冻结段爆破法施工中的掏槽爆破和光面爆破模型试验研究,然后将试验结果应用与工程实践去验证和完善.结果表明:浅眼多循环,眼深1.2~1.4m为宜;较为合理的掏槽参数为:圈径1.0~1.2m,眼距500~700mm,单位耗药量2.2~2.8kg/m;较为合理的光爆参数为:眼距500~600mm,光爆层厚度500~700mm,炮眼密集系数0.8~1.2,炮眼装药
立足于解决梅山铁矿实际存在的生产技术问题,将孔底起爆落矿新工艺较成功的应用于不同炸药种类、不同分段高度、不同炮孔直径、不同爆破类型等,均取得了显著的爆破效果,并开展了爆破孔网参数优化试验研究.这一新工艺的成功实践,无疑将对国内地下矿山更大范围推广产生深远的影响.
随着网络技术的高速发展和网络普及率的飞速提升,社交网络应用例如微信、微博、抖音和推特等已经渗透到人们日常生活的各个方面。这些应用是人们获取、交流和传播社会新闻及热点时事的重要途径,成为了人们生活中不可或缺的组成部分。社交网络上的信息传播具有传播速度快、涵盖范围广和实时性强等特点,许多热点信息会在短时间内迅速酝酿成为一股强大的社会舆论,这种社会舆论能够在一定程度左右热点事件的演化方向。然而,由于部分
钢丝绳作为最重要的挠性构件之一,在如矿井提升系统、起重机、电梯、索道等各类提升运输系统中被广泛应用。由于其工作特性,在服役过程中不可避免的因异常摩擦、刮擦、碰撞、咬绳、弯曲疲劳等问题对钢丝绳绳体,尤其是绳体表面,造成断丝、磨损等损伤,若不能及时的检测或更换,甚至可能导致钢丝绳失效,发生提升运输系统重大安全事故,威胁使用人员生命财产安全。因此,使用可靠且高效的钢丝绳无损检测方法对保障钢丝绳的健康运行
采空区煤自燃是影响矿井安全生产的重大灾害之一,不仅产生有毒有害气体,还会诱发瓦斯爆炸等次生灾害,造成严重的人员伤亡和重大的经济损失。伴随深部矿井开采的快速发展,煤自燃灾害治理日趋复杂,而构建高效的预警体系是防治矿井煤自燃的关键。气体和温度是携带煤自燃信息量最丰富的两个参数,能够有效地反映采空区煤自燃状态。然而,目前对于工作面不同区域气体浓度的分布规律掌握不清晰,很大程度上削弱了气体预警指标的现场应