论文部分内容阅读
在当前的日常生活中,食品安全问题越来越受到国民的关注。在密封食品的包装过程中,由于漏封、压穿或材料本身存在的裂缝的问题总会形成内外连通的小孔,这都会对包装内容物产生不利影响,是威胁食品安全的主要问题之一。一旦食品包装的密封性不好,食品的质量将失去保证,这不仅将对企业造成一定的经济损失,更对人们的身体健康造成威胁。目前,密封试验主要用在电子行业,而在软包装行业,密封监测主要通过手工监测和浸水的方法实现,这种方法工作效率不高,耗时,而且对于很微小的小孔很容易发生漏检的现象。 在食品和医药行业,检测塑料容器的密封性能可以采用高压放电技术,这种技术可以找到容器的各种渗透、漏封问题,是当前使用的非接触式检漏方法中的一种新型高可靠性方法。目前,国内外对介质阻挡放电机理、应用和放电电源都做了大量研究。由于密封食品在不同破损状态下的阻抗性存在差异,当高频高压电经过密封食品时,不同破损状态的密封食品的负载电压不同。根据这一原理,以火腿肠为例,本文提出了一种新的基于介质阻挡放电的检测方法,设计了一个新的检测思路,构建了一个基于支持向量机和总体平均经验模态分解的火腿肠放电信号针孔差异性识别系统。 首先,根据放电信号的非平稳特性以及小波包变换的多分辨率分析在信号去噪中的独特优势,介绍了小波和小波包变换的基本原理,仿真研究在小波包阈值去噪中不同参数选择对信号去噪效果的影响,以此为参考进行参数选择,实现对放电信号的去噪处理。然后,从密封食品介质阻挡放电的基本原理出发,引入总体平均经验模态分解(EEMD)方法对放电信号进行分解,将各IMF分量的能量比和能量熵作为抽取的特征值,仿真验证了其重复性和差异性,并与经验模态分解(EMD)提取效果进行对比,证明了总体平均经验模态分解的抗混叠能力。最后介绍了支持向量机的分类原理,将能量比和能量熵作为支持向量机的输入量进行放电信号的状态识别,并与BP神经网络分类结果进行对比,证明了支持向量机在分类精度、训练时间上的优越性。 本文将EEMD方法与支持向量机相结合的方法运用到密封食品的密封性检测中,实现了不同状态放电信号的分类,验证了这种检测方法的可行性,为后续的这种检测方法的实际应用提供了理论依据。