红霉素和卡那霉素手性固定相的制备及应用

来源 :兰州交通大学 | 被引量 : 0次 | 上传用户:jiajiadedaan1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现代科学技术的进步,人们对手性药物的对映体通常具有不同的药理作用和生理活性有了更深的理解,获取光学纯单一异构体成为医药、食品、农业和环境等领域的研究热点。目前,高效液相色谱(HPLC)结合各种手性固定相(CSPs)已经发展成为直接分离对映体最快速、高效的方法之一。因此,开发具有高选择性和适用性的新型CSPs具有重要研究意义。本论文基于偶联小分子抗生素手性选择子提高其手性分离能力,制备出三种不同抗生素的新型手性固定相。在不同流动相下,对多种结构的手性化合物进行了拆分,评价了三种新型固定相的色谱分离性能,并初步探讨了其手性识别机理。第一章主要介绍了手性分离的意义和方法,归纳总结了高效液相色谱手性固定相的分类与应用,侧重大环抗生素类手性固定相的制备及研究进展。第二章以红霉素为手性选择剂,首次合成了键合型红霉素手性固定相(ECSP)。采用红外光谱(IR)、扫描电镜(SEM)、元素分析(EA)等表征新型固定相的结构和形貌。选取12种手性化合物作测试物,在正相条件下系统地评价了其色谱分离性能,对分离条件进行了优化,并对其手性识别机理进行了探讨。第三章以卡那霉素为手性选择剂,通过4,4’-二苯基甲基二异氰酸酯作偶联剂,制备了一种新的键合型卡那霉素手性固定相(KCSP)。在结构表征的基础上,对所合成的新型固定相进行了色谱评价。结果表明,所制备的KCSP适用于正相和反相两种分离模式,成功地拆分出24种结构不同的手性化合物,并进一步探讨其手性识别机理。第四章以链霉素为手性选择剂,以4-氯苯基异氰酸酯为衍生化试剂,采用化学键合法制备得到了键合型链霉素手性固定相(SCSP)。在正相条件下较系统地考察和评价新固定相的色谱分离能力,成功地拆分了禾草灵类、菊酯类手性药物,并对其手性拆分机理进行了初步探讨。综上,本文使用化学键合法制备了三种新型抗生素类手性固定相(ECSP、KCSP和SCSP)。考察了不同流动相下对手性化合物的拆分情况,探讨了其手性识别机理。研究结果表明,这类小分子抗生素作为一类新型HPLC-CSPs,具有一定的研究意义,也为新型手性色谱柱的深入开发和应用提供了新的思路与方法。
其他文献
多分支发光化合物是化合物的一部分,它们在化学学科的发展中发挥了重要作用。多分支化合物由于多分支特点,通过引入不同的末端基可以成为结构多样的衍生物,通常用作发光、传感材料等,广泛用于各方面研究。镧系配位聚合物(Ln CPs)作为配位聚合物(CPs)的成员,是通过将一些光活性镧离子引入化合物主体中自组装形成。这种镧系配位聚合物的优点是可以提供丰富的拓扑结构,通过控制金属-分子堆积基序系统地实现可调节发
学位
超短超快激光的物理研究及应用探索一直是强场物理的热点问题。近几年来,空气激射因其在遥感应用等领域的前景,受到了人们的广泛研究;激光诱导光栅散射技术(Laser-induced Grating Scattering)作为一种相干光学探测技术,其应用场景正在被拓宽。本文围绕飞秒与气体介质相互作用,对空气激射效应中的2及2+激射进行了研究;对飞秒激光诱导光栅散射技术(fs-LIGS)用于气体压强测量做了
学位
配位聚合物(coordination polymers,CPs)是由金属阳离子与有机配体间通过配位键作用形成的金属有机聚合物,其聚合单元可在1,2或3个维度上无限延伸。其中,d10电子构型的锌离子的晶体场稳定化能为零,可通过调节配体结构构筑具有不同维数的配位聚合物;此外,锌配位聚合物可广泛应用于荧光、催化、传感、气体分离等多个领域。然而,锌离子半径小,配位空间位阻较大,使得制备高维锌配位聚合物的难
学位
本文以偶氮羧酸和咪唑羧酸配体为主配体,选用含氮杂环配体为辅配体,与碱土金属,过渡金属和镧系金属离子构筑了8种配合物,研究了不同因素对配合物结构及其性质的影响,通过一系列实验和表征研究了其在磁性,荧光传感,电化学和光催化降解等方面的性质,并对其进行了 DTF计算和Hirshfeld表面分析的理论计算。1.合成了三个偶氮羧酸配体,2,2’-二甲基-4,4’-偶氮二苯甲酸(H2L1),2,2’-二氟-4
学位
酸化技术在实现油气田增产增效的同时也伴随着采油设备及管线的严重腐蚀,甚至会引发灾难性事故。工程上通常会使用酸化缓蚀剂来解决这一问题。但单纯地将酸化缓蚀剂投入腐蚀环境,常常会因缓蚀剂的大量流失而失效。智能化的酸化缓蚀剂可以做到及时检测腐蚀发生的部位并实现按需释放。本论文首先研发了一种缓蚀性能优良的增效型曼尼希碱酸化缓蚀剂(S-AFA),然后制备了一种尺寸及结构适宜的中空介孔二氧化硅纳米容器(HMSN
学位
基于稀土元素的发光材料在光学传感、信息存储和有机发光二极管(OLED)等方面显示出广泛的应用而引起了人们极大的研究兴趣。然而,由于宇称禁阻,稀土离子表现出相当低的吸收系数,一般是利用“天线效应”即配体经过能量吸收、跃迁和发射等过程将能量传递给稀土离子使得稀土配合物发光,但这种间接激发敏化效率低且能量损失较大。因此,为了弥补这一缺陷而开辟了新的敏化途径即:引入过渡金属离子,通过过渡金属配合物单元作为
学位
吡啶羧酸类配位聚合物,是由金属离子和吡啶羧酸类有机配体通过配位键生成的一种新型功能材料。该材料不但具备结构的多样化、可调性并且普遍具备优异的水稳定性,也因此常被应用于荧光传感、染料吸附、气体存储和生物成像等多个领域。特别地,吡啶羧酸类配位聚合物的高度水稳定性及发光特性使其在水介质中的荧光传感及有机染料吸附领域颇具潜力。以功能为导向性,我们将4-羟基-2,6-吡啶二羧酸(H3CA)及苯基对位取代的2
学位
羰基化合物α官能化是构建C-C键和C-X键的基本方法之一。近几十年,醛和酮的不对称α官能化已经取得了显著的进展,但活性低的非活化酰胺和酯的不对称α官能化一直都是一个具有挑战性的难题,目前仅报道了少数成功的案例。该论文研究了手性季铵盐催化非活化酰胺不对称α烷基化反应,为非活化酰胺的不对称α官能化反应提供了一种新方法。论文第一章综述了非活化酰胺和酯不对称α官能化的研究现状。包括以下三类:(1)在强碱活
学位
近年来,配位化学的发展引起了人们的广泛关注,尤其是对Salen型化合物及其衍生物的研究和探索,引起了现代化学界的极大兴趣。一般来说,含有不同配位环境和成键模式配体的设计被认为是决定杂多核金属(Ⅱ)配合物结构的关键因素。由于这些Salen型配体具有稳定的四齿N2O2空腔配位环境,它们能够与各种过渡金属(Ⅱ/Ⅲ)配位,形成具有不同结构的金属(Ⅱ/Ⅲ)配合物,然而,根据我们现有的方法,丰富的3d-s,3
学位
气候变化对物种的分布格局和栖息地连通性有重大影响,探讨气候变化下的物种范围转移和生态廊道的变化对保护工作至关重要。祁连山位于青藏高原的东北部,孕育着丰富的有蹄类动物,开展有蹄类动物保护评价和政策规划应重点关注其栖息地对气候变化的响应。本文以岩羊(Pseudois nayaur)、白唇鹿(Przewalskium albirostris)、马鹿(Cervus elaphus)、马麝(Moschus
学位