【摘 要】
:
本文首先给出了八元数和复化八元数的表示和代数性质,主要讨论了八元数的Caley-Dickson 极坐标形式,复化八元数的零因子及-1 在八元数、复化八元数及 Clifford的根,并以此为基础
论文部分内容阅读
本文首先给出了八元数和复化八元数的表示和代数性质,主要讨论了八元数的Caley-Dickson 极坐标形式,复化八元数的零因子及-1 在八元数、复化八元数及 Clifford的根,并以此为基础建立了八元数快速 Fourier 变换.
其他文献
多贝西小波密度泛函方法在材料、物理、化学以及纳米科学等诸多领域有着广泛的应用背景。以多贝西小波作为基函数,通过自洽迭代求解Kohn-Sham密度泛函方程的方法是电子结构计算的先进方法。该方法利用了小波的局域性,使得各种边界条件下的网格划分呈现出高精度。基于多贝西小波形式的电子结构计算程序Big DFT能够同时满足许多应用对精度和局域性的要求,并且还可以利用MPI、Open MP、CUDA和Open
物理学和工程学的许多问题都归结为求解Laplace方程.本文主要研究三维Laplace方程的Cauchy问题,该问题是不适定的,即定解条件的微小扰动会引起解的很大误差.而在实际应用中,
高中阶段是学生体能发展和思维发展的重要阶段,在这一阶段形成的思想和习惯会逐渐定型并伴随学生一生,因此在高中紧张的文化课教学中,学校和教师也要同步关注学生的心理健康
本文讨论k-层软容量设施选址博弈,它是k-层软容量设施选址问题的变形.众所周知,设施选址问题是NP-难问题,做为设施选址问题的推广,k-层软容量设施选址问题也是NP-难问题.除非
请下载后查看,本文暂不支持在线获取查看简介。
Please download to view, this article does not support online access to view profile.
请下载后查看,本文暂不支持在线获取查看简介。
Please download to view, this article does not support online access to view profile.
随着科学技术的发展,人们开始接触越来越多的数据。特别是随着信息技术的发展,海量数据成为了科学研究中不可缺少的依据。这些海量数据在统计中通常被称为高维数据。一方面,
在Finsler度量中,有一种简单而又特殊的度量-Randers度量.Randers度量有着很多很好的性质和特点,它不仅在物理上有着深刻的背景,而且在构造具有各种曲率性质时十分有用.对于Rand
这篇学位论文包含两个结论。在第一个结论,主要讨论了自仿射迭代函数系的开集条件和自仿射测度的均方变分。通过给出开集条件的一些刻画,我们证明了自仿射测度的均方变分在一定