氧化镓基光电探测器的制备及其性能研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:zxcasd456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于臭氧层对200~280 nm波段紫外辐射的完全吸收,此波段在大气层中几乎不存在,因此我们称之为“日盲”波段。基于此波段的紫外探测器由于具有背景噪声低和虚警率低等优点,其在紫外制导、紫外空间预警和导弹预警等军事领域和在高响应火灾预警、电晕检测、大气环境监测等民生领域有着广泛的应用前景,并受到研究者的广泛关注。在众多宽带隙半导体中,β-Ga2O3作为一种新型超宽禁带半导体材料,其独特的化学和物理特性、较宽的带隙(~4.9 e V)以及低廉和简单的制备工艺等优点,是制备日盲紫外光电探测器的天然最佳候选材料。近年来,尽管基于β-Ga2O3基光电探测器的研究已取得很大进展,但受困于较差的外延β-Ga2O3质量以及比较单一的器件结构,使探测器具有较低的光谱响应度和较慢的光谱响应速度,从而不能满足商业化的需求。因此,基于高质量的外延β-Ga2O3薄膜实现高响应、高灵敏性的探测器仍需要不断努力。基于上述研究背景,本文开展了高质量外延β-Ga2O3薄膜的工艺优化和基于β-Ga2O3薄膜的高性能日盲紫外光电探测器的研究,从改善外延β-Ga2O3薄膜质量、优化器件结构和修饰器件表面三个方面入手,期望能够实现高结晶度、低氧空位等缺陷的β-Ga2O3薄膜材料,以及高响应、高灵敏性的β-Ga2O3基紫外光电探测器。论文的主要研究内容和主要结论如下:1)基于脉冲激光沉积技术(PLD)对蓝宝石衬底外延β-Ga2O3薄膜及后续薄膜质量的改善工艺进行优化。系统地研究了衬底温度、退火温度和退火环境对β-Ga2O3结晶质量、表面形貌和光学带隙的影响。研究结果表明:适当增加衬底温度,可以为沉积粒子在衬底表面迁移提供足够的能量,使β-Ga2O3薄膜从非晶态转变为多取向的纳米晶态。在高温下退火,有利于薄膜二次结晶,使β-Ga2O3薄膜从纳米晶态转变为高结晶的单晶态。但退火温度高于900°C时,会引起衬底中Al原子向β-Ga2O3薄膜中扩散,导致薄膜光学带隙变大,同时大部分氧原子的逸出,导致β-Ga2O3薄膜中氧空位浓度增加以及更多的Ga3+转化为Ga1+,使β-Ga2O3晶体结构受到破坏。在氧气中退火,氧原子的补偿使β-Ga2O3中的氧空位浓度得到降低和表面粗糙度得到改善,但间隙氧原子的引入造成光学带隙变小。在氮气中退火,氮元素的掺杂促使β-Ga2O3的晶粒增大和薄膜结晶质量提升,但较大的晶粒引起表面粗糙度增大。在空气中退火,受空气中杂质的影响,会产生更多的OH-,从而引起β-Ga2O3中氧空位等缺陷增加。综上所述可知,外延高结晶度、低氧空位浓度β-Ga2O3薄膜的优化工艺为:600°C的衬底温度并在氧气氛围和800°C下退火。2)基于工艺优化的β-Ga2O3薄膜研制了β-Ga2O3基MSM型日盲紫外光电探测器。在15 V的偏压下,探测器的光暗比达到699.6,光谱响应速度达到0.64 s/1.12 s以及光谱响应度达到6.03A/W。证明了优化β-Ga2O3中的氧空位浓度,可以有效提高探测器的性能。为了进一步降低探测器暗电流,论文提出了具有非对称电极几何结构的MSM型(a-MSM)探测器。在光照下,非对称肖特基势垒的存在,使β-Ga2O3基a-MSM型探测器表现出自供电特性。在0 V偏压下,a-MSM型探测器的光谱响应度达到0.487 A/W,探测率达到6.13×1010 Jones;在-15 V的偏压下,暗电流达到21.9 n A,降低为原来的10.4%,但其光谱响应度降低为原来的58.5%。为了进一步优化a-MSM型探测器的光谱响应度,论文引入金属Pt纳米颗粒修饰β-Ga2O3基a-MSM型探测器表面。在光照射下,金属Pt纳米颗粒产生局域表面等离激元效应即增强了光的吸收、提高器件的光电特性。在0 V偏压下,Pt NPs@β-Ga2O3基a-MSM型探测器的光谱响应度达到1.532 A/W,探测率达到2.18×1011 Jones,与原器件相比较分别提高315%和354%。证明了非对称电极与金属Pt纳米颗粒的协同作用是提高光电探测器光电特性的一种有效方法。3)针对β-Ga2O3由于较低导热率产生自热效应影响器件性能的问题,论文选择具有优良导热性能的p型4H-Si C为衬底,并通过引入(AlxGa1-x)2O3缓冲层,降低衬底与外延β-Ga2O3界面间的缺陷密度,成功制备了β-Ga2O3/4H-Si C p-n异质结自驱动紫外光电探测器。在0 V偏压下,探测器的光暗比超过103,光谱响应度达到10.35m A/W,同时探测器的光谱响应速度提升至毫秒级,探测器性能指标已优于同类结构的其它探测器。4)针对β-Ga2O3基异质结界面氧空位产生大量界面态,恶化器件性能的问题,论文选择p型氧化物NiO,使NiO中的O补偿界面处的氧空位,减少界面缺陷,论文成功制备了β-Ga2O3/NiO全氧化物异质结自驱动紫外光电探测器。在0 V偏压下,探测器的光谱响应度、探测率和光谱响应速度分别达到了0.245 m A/W、1.8×108 Jones和12 ms/8 ms。为了进一步优化该异质结探测器性能,论文引入金属Pt纳米颗粒对异质结探测器表面进行修饰。在0 V偏压下,探测器的光谱响应度、探测率和光谱响应速度分别达到4.27 m A/W、4.23×109Jones和4.6 ms/7.6 ms。证明了Pt纳米颗粒在提高β-Ga2O3基异质结探测器光电性能方面的重要应用。
其他文献
对称锥互补问题是一类重要的均衡优化问题,在经济、通信工程、交通等领域有着广泛的应用.它不仅为非线性互补问题、二阶锥互补问题、半定互补问题等优化问题提供了一个统一的研究框架,而且与对称锥线性规划、组合优化、不确定优化、均衡理论密切相关.欧氏若当代数是研究对称锥互补问题的一个重要的工具.本文基于欧氏若当代数,研究了几类对称锥互补问题,包括单调对称锥互补问题、强单调对称锥互补问题和笛卡尔P0-对称锥互补
随着信息技术、计算机技术和通信技术的持续快速发展和广泛普及,形成了具有开放性、异构性和多安全域等诸多特性的复杂网络环境。复杂网络环境中,各种信息系统协同运作使得数据在不同系统、不同域的访问流转日益频繁。数据在跨系统跨域访问流转中面临着各种安全问题,如非法流转及流转后非法操作造成数据泄露、数据泄露后难以发现等。这些安全问题严重影响了新服务模式的推广使用。针对上述数据跨域流转的安全问题,本文从访问控制
分层粗糙面及其与目标的复合散射和成像在雷达探测、目标识别、微波成像等领域有着非常重要的理论意义和应用价值。对于探地雷达探测中分层粗糙面以及分层粗糙面与埋藏目标的宽带复合电磁散射,采用时域有限差分法进行建模和计算,可以方便地处理包括不同粗糙度分层粗糙面与不同形状大小、不同介电属性目标所组成的较复杂的媒质模型,且计算精度高。时域有限差分法是一种便于处理宽带散射的时域方法,能够很好地适应探地雷达探测主要
金刚石作为超宽禁带半导体材料,具有超强的抗辐照特性、皮秒级的超快时间响应、极高的热导率、极高的击穿场强,使其成为下一代强辐射场核探测器的理想材料。随着化学气相淀积(CVD)合成金刚石技术的发展,CVD金刚石核探测器在高能粒子探测、强辐照高温环境探测、脉冲场探测等多种应用场合表现出明显优于传统硅基核探测器的性能。金刚石核探测器研究的一个关键问题,是金刚石核探测器的性能不一致性巨大且机理尚不明确,高性
干涉合成孔径雷达(Interferometric Synthetic Aperture Radar,InSAR)是一种成熟的遥感技术,它能够高度精确的测量如地形、地表形变以及冰川运动等重要的地球物理参数。雷达系统的观测信号为相位主值,因此相位解缠绕(Phase unwrapping,PU)成为InSAR技术中不可或缺的关键步骤,其求解性能也直接决定了后续遥感产品的性能。在过去几十年中,传统的单基线
自上世纪90年代以来,涡旋光束因其携带的轨道角动量,在光通信、光学微操控、光信息处理等方面具有重要潜在应用价值而得到了广泛关注。对自由空间光通信而言,涡旋光束可以极大地提高信道容量,但由于大气湍流对光束相位的随机扰动,引起了光斑扩展、光束漂移、光强闪烁等一系列常见湍流效应,此外对涡旋光束相位的扰动还会造成螺旋谱弥散、模式纯度降低,这些传输效应对光束的通信性能造成了极大的影响。为了分析大气湍流对涡旋
多输入多输出(Multiple Input Multiple Output,MIMO)雷达采用发射分集技术,可以有效实现系统自由度的扩展,其灵活可控的工作模式能够适应复杂多变的工作环境。新体制发射分集MIMO雷达成为近些年来热门的雷达系统之一,通过引入频率偏移量或时间偏移量,进一步扩展发射自由度,实现多维域性能提升,为现有MIMO雷达发射方向图设计,复杂度高,多普勒容忍性较差等问题提供了新的解决途
现代战场电子环境日趋复杂,雷达干扰和抗干扰技术在斗争中不断演化。其中,欺骗式干扰,尤其来自主瓣方向,是一种极具威胁的干扰方式。随着数字射频存储器(DRFM)技术日渐成熟,显著增强了欺骗能力。通常,干扰设备对雷达系统发射波形进行复制并延迟转发产生虚假目标,给鉴别真、假目标信号及干扰抑制带来了困难。机械扫描雷达到相控阵雷达直至多输入多输出(MIMO)雷达的革新,增加了系统可控自由度,扩展了阵列雷达系统
随着大数据、云计算、物联网、智能终端的快速发展,人类的生活、工作方式将彻底改变。然而,各个领域的快速发展也带来了新的安全威胁。本文基于分层检测,整体协同的思想,设计了点、线、面三层的入侵检测体系架构,分别对单一目标网络、不同本地网络之间(时间,空间)以及本地网络与云平台之间的入侵检测进行较为深入的研究。本文所取得的主要研究成果如下:1.针对现有未知攻击检测方法仅定性选取特征而导致检测精度较低的问题
氮化物半导体因其优异的特性在发光二极管(LED)领域已经取得了巨大的成就,开启了全新的照明时代。特别是近年来,基于In GaN和AlGaN的紫外LED由于具有不含汞、体积小、功耗低等优势,广泛用于固化、真伪检验、杀菌、消毒等领域,已成为新一代固态紫外光源的重要选择,受到了业界广泛关注。然而,长期以来,实现具有高可靠性的氮化物紫外LED一直是业界的核心挑战之一。由于氮化物中普遍存在高密度位错缺陷和点