基于集成学习下几种蛋白质翻译后修饰位点预测

来源 :景德镇陶瓷大学 | 被引量 : 0次 | 上传用户:seanchn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蛋白质翻译后修饰(PTMs)是蛋白质功能的重要调控因子,是指由PTM酶协调的蛋白质的化学修饰,在许多生理的过程中起到了关键作用。目前已经鉴定出来的近200种不同类型的PTMs。其中有超过一半的真核生物蛋白质在其生物周期中的某个时刻被翻译后修饰。构成蛋白质序列组成常见的氨基酸中,半胱氨酸和赖氨酸是常见的蛋白质序列中修饰的残基。当下,通过蛋白质组的方法,蛋白质修饰位点已经能够在实验中获取,然后实验上所耗费的时间和仪器上所消耗的成本依然面临挑战。因此,开发此类数学计算方法去预测蛋白质修饰位点是有必要的。在当下的研究中,非平衡数据集分类是当下研究的热点,然而目前现有的传统机器学习方法一般只适用于平衡的数据集。本项目通过蛋白质自身存在的序列信息和结构特点提取特性信息,再采取非平衡类模型算法进行预测,从而达到较好的预测效果。S-亚磺酰化是蛋白质半胱氨酸的可逆氧化,他在病理和生理学中起着关键作用。本研究采用了基于耦合信息(PseAAC)方法获取样本根据不同位置的特征信息,运用了集成支持向量机的方法构建了一个整体的分类器,并且采用了多数投票原则,使得预测效果更加优化,并且开发了一个名为i Sulf_Wide-PseAAC的预测器对蛋白质S-亚磺酰化位点的预测器,通过五折叠交叉验证训练数据,最终独立测试集显示性能中Sn、Sp、MCC、Acc分别为:88.28%、92.16%、79.95%、90.80%,对比现有的预测器,提升效果明显。丙二酰化作为一种新发现的蛋白质翻译后修饰(PTM),是在正电的Lys侧链上,通过化学修饰参与到人类新陈代谢调节的作用,功能和结构变化具有比较大的关联性。本项目通过结合了蛋白质序列的耦合信息与一般伪氨基酸(PseAAC)序列组成成分提取序列特征信息,并且采用了多种集成学习方法对非平衡数据集进行训练分类。通过交叉验证模型以及独立测试集结果显示性能中,Sn、MCC都优于现有的预测器,因为非平衡数据考虑Sn与MCC至关重要,所以总体来说,提升效果依然很明显。本次论文的研究中,都是当下的热点。主要还是针对非平衡数据集二分类进行研究。针对现有的蛋白质修饰位点数据,正常情况下未被修饰的蛋白质数量是远高于修饰后的蛋白质数量,因此解决非平衡分类问题就更值得大家研究和探索。
其他文献
Chomsky在《最简方案》中取消了 D-结构和S-结构,仅保留了 PF,接口层和LF接口层,指出一切句法推导都是为了满足这两个表达式条件。在最简方案框架下,词项以饱满的形态参与句法推导,因此特征核查就成为了核心的句法推导技术。然而,特征在强度上并不是整齐划一的,有的是强势特征,有的是弱势特征。强势特征不能被PF接口层所“容忍”,必须在拼读前进行特征核查并删除。相反,弱势特征可以被PF接口层所“容
文化作为一个国家的标志和灵魂,是推动民族复兴和国家发展的强劲动力。进入21世纪以来,文化软实力在国际竞争中扮演着越来越重要的角色,党的十八大报告中明确了建设“社会主义文化强国”的奋斗目标。公共文化服务是社会稳定、和谐、健康发展并形成社会凝聚力的最基本因素,提升公共文化服务水平不仅有助于提高国民文化素质,还能为文化的大发展、大繁荣打下深厚的根基,因而成为新时期国家发展的重要战略。改革开放40年以来,
学位
饲粮纤维(膳食纤维)的定义有多种解释,常见的是基于化学成分和生理功能。从化学成分的角度来看,饲粮纤维是非淀粉多糖(NSP)和木质素的总和。DF的来源和组成在较为广泛。饲粮纤维源的物化性质可能会引起肠道内环境的变化,从而引起肠道菌群分布变化。猪饲粮中作为饲料营养成分的可接受性取决于一些因素,如膳食纤维含量、大肠微生物发酵水平以及对产生的挥发性脂肪酸(VFA)的吸收和利用程度。纤维来源的发酵发生在GI
在粒子物理学中,标准模型得到了快速且完善的发展,但仍然需要对其进行精确的检验,这就给实验家提出了新的挑战。量子色动力学(Quantum Chromodynamics,QCD)在高能量范围内可以使用微扰理论进行解释,但微扰理论不适用于低能量范围。北京谱仪 Ⅲ(Beijing Spectrometer,BESⅢ)实验的能量范围正处于 2.0000-4.7000 GeV,且在此范围内采集了大量的数据样本
近年来,镁合金由于其密度低,比强度高,减震性好等优点,成为了航空航天和汽车制造等诸多领域极具前景和应用价值的金属材料。然而,其强度低、耐磨性差以及耐腐蚀性能较差等原因,在工业生产中受到了限制。表面滚压强化是一种通过机械加工的方式实现零部件表面强化的加工工艺,可有效提高零部件表层的综合性能,延长其使用寿命。虽然表面滚压强化在工业生产中已经获得了初步应用,但对镁合金的表层力学性能、耐磨性以及耐腐蚀性能
稀土在钢中的应用多集中于非金属夹杂物的改性以及钢液的净化作用,随着冶炼技术的发展,稀土在钢中的微合金化机理已成为材料性能调控而亟待探究的问题。本文以添加稀土钇(Y)的H13钢为研究对象,利用扫描电镜、电子背散射衍射、透射电镜、三维原子探针、热膨胀仪和多功能内耗仪等手段系统研究了稀土Y对H13钢微观组织及性能的影响,揭示了稀土Y对H13钢性能调控的微合金化作用机理。主要研究结论如下:(1)适量稀土Y
基于野外露头资料,通过旋回地层学、地球化学等分析方法,运用有机碳同位素组成及化学风化指标数据序列,滤波输出记录在沉积物中的天文轨道参数,探讨天文轨道周期变化及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响。研究表明,天文轨道周期驱动下的气候变化控制不同级次海平面波动,斜率周期调制的气候变化驱动海洋温盐循环,将位于高纬度区营养物质向中低纬度区转移,温盐循环是低纬度扬子区海洋生产力的主要动力。
近年来,有关废气排放的法规日益严格,导致汽车发动机效率要不断提高,传统的铸造Al-Si合金的高温强度、耐热疲劳等性能目前已临近极限,不能满足新型高功率发动机的发展要求。合金化是解决铸造Al-Si合金高温性能不足的主要手段,通过固溶强化、弥散强化、消除高温亚稳相等,改善合金显微组织,达到铸造Al-Si合金高温性能的要求。但是,合金元素含量过高会产生脆性相使合金的性能恶化。因此,只有添加适量的合金元素
钙钛矿材料作为一种性能优异的光电材料成为了研究的热点,但是不可忽略的铅毒性和较差的环境稳定性严重阻碍了其实际的应用。基于此,提出了构筑双钙钛矿结构体系,更多的无毒离子被用来替代铅离子,以此来降低钙钛矿的毒性和提高其环境稳定性。在具有双钙钛矿结构的各种组合物中,Cs2Ag In Cl6由于其具有直接带隙,长的载流子寿命和易于加工性等特点受到了更多的关注(详见第一章)。在本论文中,作者通过设计不同的合