论文部分内容阅读
液晶/高分子复合材料兼具液晶分子的外场响应特性与高分子材料的良好的力学和加工特性,在大面积、柔性和超薄显示、建筑用调光玻璃、智能传感等领域具有巨大的应用前景。目前液晶/高分子复合材料主要有聚合物分散液晶(polymerdispersedliquidcrystal,PDLC)和聚合物稳定液晶(polymer stabilizedliquidcrystal,PSLC)两种体系。在PDLC体系中液晶分子以微滴形式分散在高分子基体中,通过施加电场可实现光散射态和光透过态之间的切换。PDLC具有成膜性好、薄膜可大面积柔性加工等优点,然而由于驱动电压较高,应用范围受限且不利于节约能耗。PSLC体系则利用高分子网络的锚定作用稳定液晶分子的取向,其光学状态在外场作用下同样可发生改变。但体系中高分子网络含量较低造成薄膜力学性能较差,难以进行大面积柔性加工。因此开发兼具优异电光性能和可大面积加工性能的新型液晶/高分子复合材料具有重要的科研意义和商业价值。本论文通过结合PDLC与PSLC的制备方法,构筑了兼具PDLC与PSLC两种体系的微观网络结构特点的新型液晶/高分子复合材料体系,并将其称之为聚合物分散与稳定液晶的共存体系(a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals,PD&SLC)。在此基础上发展了新型电控调光膜(电控膜)、双稳态调光膜(双稳态膜)和温控调光膜(温控膜),并对其光学调控性能进行了研究。具体内容如下:(1)PD&SLC体系制备方法的研究。研究了 PD&SLC体系的制备方法,通过将液晶性可聚合单体、非液晶性可聚合单体与不同种类的小分子液晶进行共混,获得的各向同性混合物材料样品在光诱导聚合的同时施加电场以完成PD&SLC体系的构筑。研究结果表明:在紫外光引发的自由基聚合反应中,由于液晶性可聚合单体的聚合速度低于液晶与非液晶性可聚合单体发生相分离的速度,样品聚合过程中首先形成聚合物网络孔洞状连续结构,后由被电场取向的液晶性可聚合单体聚合而在孔洞结构中形成纤维状网络结构。从而在PD&SLC液晶/高分子复合材料中构筑出兼具PDLC与PSLC体系微观网络结构的新形貌。(2)基于PD&SLC的低驱动电压电控膜的制备与性能研究。研究了手性化合物含量、聚合电压、光照强度等实验条件对PD&SLC电控膜的网络结构及电光性能的影响。研究结果表明:基于PD&SLC体系制备的电控膜的驱动电压相比同等制备条件下基于PDLC体系的薄膜的驱动电压可降低50%。通过优化各实验条件可调控体系的网络微结构和改善电光性能。本研究中手性化合物含量为6.0 wt%、聚合电压为80.0 V、光照强度为2.0 mW/cm2时制得的电控膜的电光性能较优异。(3)基于PD&SLC的双稳态膜的制备与性能研究。研究了离子液体浓度、聚合电压、光照强度等实验条件对PD&SLC双稳态膜电光性能的影响。研究结果表明:PD&SLC体系可用于近晶A相液晶基双稳态膜的制备,且通过优化各实验条件可有效降低驱动电压、改善开关态透过率。本研究中离子液体浓度为0.2 wt%、聚合电压为80.0 V、光照强度为0.1 mW/cm2时制得的双稳态膜的电光性能较优异。(4)基于PD&SLC的温控膜的制备与性能研究。研究了聚合电压、光照强度对PD&SLC温控膜性能的影响。研究结果表明:与PSLC体系相比,基于PD&SLC体系的温控膜兼具良好的光学性能和力学性能,且能够实现大面积的柔性加工。本研究中聚合电压为160.0 V、光照强度为0.1 mW/cm2时制得的温控膜的光学性能较优异。