改性NiFe2O4载氧体甲烷化学链制氢反应性能研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:MyLoverQLH
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
化学链制氢技术是一种非常有潜力的制氢技术。NiFe2O4载氧体是化学链制氢过程中综合制氢性能最好的载氧体之一,但依然存在反应稳定性较差、氢气产量较低等问题。本文从金属助剂的掺杂、惰性载体的负载以及反应条件优化等三个方面对NiFe2O4载氧体的制氢性能以及反应稳定性进行优化提升。首先,通过溶胶凝胶法对NiFe2O4载氧体分别掺杂Ce、W、Sr三种金属助剂,通过化学链制氢实验筛选出10wt%Ce-NiFe2O4载氧体的产氢性能最好。对Ce掺杂量为0-10wt%的NiFe2O4载氧体进行化学链制氢实验,筛选出6wt%Ce-NiFe2O4载氧体的产氢性能最好。HSC Chemistry热力学模拟以及表征分析结果表明,在Ce掺杂入NiFe2O4载氧体后,载氧体中反应活性较高的尖晶石结构含量大大提升,从而提升了载氧体的反应活性和单位质量载氧体产氢量;同时,掺杂Ce后载氧体的比表面积有所提升,有利于化学链制氢过程中气固反应的进行。但是,随着Ce掺杂量的增加,Ce在载氧体中以Ce O2的形式大量出现,由于Ce O2的反应活性低于尖晶石结构,Ce O2含量过多会使载氧体的产氢量降低。然后,通过机械混合法分别对6wt%Ce-NiFe2O4载氧体负载Si O2、Ti O2、Al2O3三种惰性载体,筛选出50wt%Al2O3-6wt%Ce NiFe2O4载氧体的产氢性能最好。对Al2O3负载量不同的6wt%Ce-NiFe2O4载氧体进行制氢实验,筛选出50wt%Al2O3-6wt%Ce NiFe2O4载氧体产氢量最高;同时该载氧体的反应稳定性较好,在15次循环实验后产氢量保持稳定。表征分析结果表明,Al2O3负载后可以有效地提升载氧体的比表面积,有利于气固反应的进行。Al2O3的负载有效的阻止了载氧体在循环反应中尖晶石结构的崩坏损失;同时,抑制了反应过程中活性位点的团聚现象,减少了烧结现象的发生,有效提升了载氧体的反应稳定性。最后,对改性载氧体在化学链制氢过程中的最佳实验条件进行了筛选。得出载氧体最佳凝胶PH值为7.5,最佳反应温度为850℃,最佳去离子水注射量为0.1ml/min。本研究通过Ce掺杂和Al2O3负载对载氧体进行改性,提高了载氧体的综合制氢性能和反应稳定性,降低了载氧体中Ce、Ni等金属的使用量,提升了化学链制氢系统的经济性。
其他文献
在我国城市化水平日益提高的背景下,大跨度、大空间建筑逐渐成为城市化程度的代表。在大型建筑中,单层索网点支式玻璃幕墙结构是一种以拉索为主要受力构件的预应力柔性体系,通过事先给幕墙拉索进行预张拉,从而形成足够的刚度来承受外力作用,所以拉索无疑是大型建筑最为重要的构件之一。预应力拉索的索力对于结构的安全和稳定性至关重要,拉索的受力状态直接影响着结构整体的工作状态,所以对预应力拉索的研究工作尤为重要。基于
随着全国垃圾分类政策的推进,易腐垃圾的处理处置问题日益突出,而填埋、焚烧、厌氧消化、好氧堆肥等传统处理处置技术存在资源化利用程度低、运行成本高、二次污染控制成本高等问题,均存在一定局限性。热解碳化技术作为一种高效便捷的易腐垃圾处理工艺,可以实现易腐垃圾的减量化、无害化、资源化。目前针对易腐垃圾热解碳化的研究主要集中在热解机理及产物特性方向,缺乏生产性试验的模拟和评价。本文以易腐垃圾热解碳化工业化生
山地建筑因其独特的环境协调能力在我国西部地区得到了非常广泛的应用。但因基础的不等高接地特点导致了其力学特性与普通结构有所不同,当将框架-剪力墙结构体系应用到山地环境中时,采用怎样的计算方法对结构进行体系界定将直接关系到建筑的经济性与安全性,此前还未对这个问题展开研究,已经正式颁布实施的《山地建筑结构设计标准》也仅仅是基于经验上的判断给出了一种建议办法,缺少相应的理论支撑。因此本文以山地掉层框剪结构
随着我国城镇化进程的加快,城市人口急剧增多,环境恶化、土地稀缺已经成为了现代各大型城市需要共同面对的棘手问题,尤其是在土地资源有限却最具活力的城市中心区。城市建设对土地需求的不断增加,迫使土地呈现出高强度的开发趋势。随着工业化、城市化进程不断加快,地下空间规模迅速扩大,目前我国地下空间建设量年均增速达20%,到目前为止地下空间的规划建设量已经完成了近60%。而加强城市地上公共空间和地下公共空间的竖
工程水泥基复合材料(ECC)是基于断裂力学和微观力学基本原理进行系统设计、可运用于土木工程领域的一种新型纤维增强水泥基复合材料。当ECC受拉时,可以展现出明显的拉伸应变-硬化性能和多缝开裂特征,对于结构的安全可靠性十分有利。为保证ECC在工程运用中更好地发挥优越性能,其与钢筋之间必须拥有可靠的粘结和锚固。因此,ECC与钢筋之间粘结性能的研究尤为重要。现有关于ECC与钢筋粘结性能的研究多数围绕单纤维
自然界中,有许多自然灾害,如地震、台风等,这些灾害严重威胁着结构的安全,所以在结构设计中,往往希望能够预测出结构在不同强度的灾害下的失效概率,并以此来指导结构的安全设计。这些灾害通常具备随机的特性,如地震、风、波浪等,荷载的随机性往往会使得结构的行为呈现出随机性,表现为随机的时间函数,而结构本身也存在着复杂的随机性,二者之间的随机性相互作用,会使得结构表现出更为复杂的行为,因此研究结构随机振动下的
利用菱锰矿酸性浸出得到的硫酸锰溶液经过除杂后,可用来生产电解锰(EM)和电解二氧化锰(EMD),但近年来,菱锰矿锰品位在不断下降,进行工业利用的成本也随之上升,因而,利用软锰矿来生产EM和EMD也成为业界趋势。针对软锰矿-黄铁矿湿法还原浸出反应存在锰浸出率低、硫转化困难的问题,较多研究者提出利用化工过程强化技术促进锰浸出、硫转化。基于此思路,本文以广西某地的软锰矿和黄铁矿为研究试样,以微波作为过程
农村生活污水治理是当前农村人居环境整治的突出短板,解决该问题的关键在于如何选择符合农村经济社会发展实际的处理工艺。因此,研究因地制宜、高效低耗、长效运行、操作简便的污水处理工艺势在必行。本研究根据农村生活污水的变化特征,从节能降耗的角度考虑,提出复合型梯级循环跌水曝气折流反应器,其主要的特征是:污水在布置如阶梯的含有填料的生物池内循环折流流动,装置由于高差的存在而发生跌水曝气充氧,处理的出水由合建
随着我国风电装备制造业不断发展,风电叶片原材料的进口依赖已成为制约风电叶片制造企业产能的主要问题。新冠疫情下,进口原材料供应中断,叶片生产、运输、交付等环节接连受限的事实,更突显了进口原材料供应中断对风电叶片制造企业实际收益的负面影响。因此,风电叶片制造企业需要提升供应链弹性,提高预防和应对进口原材料供应中断的能力,减小经济损失。提升供应链弹性,就意味着企业需要投入资源,加大企业经营成本。为了避免
电炉炼钢产生的电炉粉尘中含有大量的Zn、Fe等有价元素,转底炉处理技术为现阶段处理含锌粉尘的常用处理方式,其工艺过程为:将含锌粉尘与碳质还原剂制成球团后送入转底炉处理,利用锌的沸点低将其脱除,从而达到Zn、Fe分离的目的,得到的金属化球团可作为炼铁或炼钢的原料。为此,本文以电炉粉尘为原料,针对转底炉处理工艺,开展电炉粉尘碳热还原的相关理论分析与实验研究,为转底炉技术处理电炉粉尘的工业应用提供依据。