基于硅光波导的可逆逻辑门研究

来源 :宁波大学 | 被引量 : 0次 | 上传用户:voidemort
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着集成电路的发展,芯片越来越接近工艺制造的极限,面对大数据量传输的需求的增加,以光为传输载体的光互连技术开始崭露头角,因其具有高速传输速率以及抗电磁干扰等优良特性,可突破电互连在带宽、功耗等方面的瓶颈。光逻辑器件是光互连中实现高速、大容量光信号处理的基础元件。其中,可逆逻辑器件因将输入与输出一一对应,能解决不可逆逻辑中因信号位丢失而引起的散热问题而备受关注。硅基光子技术可兼容现有互补金属氧化物半导体工艺,在通讯波段基本无损透明,具有宽带、高速、低功耗、易于集成等优势。鉴此,本论文将围绕基于硅光波导的可逆逻辑门进行研究,具体研究内容如下:1、提出并研究三种基于石墨烯-硅槽型波导的光学可逆逻辑门,包括Toffoli门、Peres门和Fredkin门。所提出的Toffoli门、Peres门和Fredkin门由Mach-Zehnder干涉结构和多模干涉耦合器级联而成。在每个Mach-Zehnder干涉结构中的移相器是由石墨烯-硅槽型波导所构成。当石墨烯的化学势被外加电压调节后,所设计的石墨烯-硅槽型波导有效折射率的实部将发生改变,进而改变Mach-Zehnder干涉结构的输出状态,继而实现Toffoli、Peres和Fredkin门逻辑功能。在波长为1550 nm处,当石墨烯的化学势从0.60 e V变化至0.90 e V时,所设计的Toffoli、Peres和Fredkin门的最小消光比分别为24.19 d B、24.60d B和18.63 d B,最大串扰分别为-32.56 d B、-27.81 d B和-20.80 d B。2、提出并分析一种基于交叉相位调制效应的硅基全光Fredkin门。所设计的硅基全光Fredkin门是由四个定向耦合器以及两个相移臂所构成。其中,四个定向耦合器包括两个2×2定向耦合器、一个2×1定向耦合器以及一个1×2定向耦合器。通过控制输入的泵浦光与信号光,使其在相移臂中引发交叉相位调制效应,用以改变上下相移臂中信号光的相位差,从而在所设计器件的不同端口输出不同幅度的光波,继而实现Fredkin门的逻辑功能。与此同时,通过利用Matlab并结合分步傅里叶法对所设计的硅基全光Fredkin门进行仿真分析,结果表明,器件的最差消光比可达到48.46 d B。3、提出并实验验证一种基于硅基微环的Feynman门。所提出的Feynman门是由两个微环谐振器级联而成。通过调节加载在微环上的电信号,利用硅材料的热光效应,使微环的谐振状态发生变化,继而实现Feynman门逻辑操作。实验结果表明,在1550 nm的工作波长下,所制备的Feynman门可以实现较高的消光比和较低的串扰。在“00”、“01”、“10”和“11”四组逻辑操作数作用下,器件的最小消光比为14.73 d B,测得的开关10%-90%上升时间和90%-10%下降时间分别约为6.91μs和15.68μs。
其他文献
作为微波输能系统中的重要部分,整流天线的关键部分是整流电路。由于整流二极管的非线性特性,整流天线与发射天线间因极化失配而产生的损耗、信号工作频带不唯一以及负载工作状态多变等因素的影响,使得宽负载范围、宽输入功率、多频带或宽频带整流电路的设计难以实现。针对上述问题,本文就宽输入功率、宽负载范围和双频段整流电路展开研究,主要研究内容详述如下:首先,提出了一种具有宽输入功率和宽负载范围的双频整流电路。该
学位
集成电路的发展使无线传感网络(Wireless Sensor Network,WSN)应用日益广泛,而为WSN节点供电的传统电池存在体积大、寿命短等缺点。近年来随着工艺水平的提高,WSN节点的功耗已降低到微瓦级,使得微弱环境能量俘获技术为WSN节点供电成为可能。单一能源换能器在某些情况下,例如光电池在光照强度低或热电池在温差较低的环境中,不足以为WSN节点供电,多源能量俘获电路正在得到重视。目前多
学位
与传统的有线输电方式相比,无线功率传输(Wireless Power Transfer,WPT)避免了线缆长时间使用老化、设备接口频繁拔插放电、植入式医疗设备充电麻烦等问题,使系统更加的安全便捷,已广泛应用于手机、电动汽车、可植入式医疗设备等领域。但在实际应用过程中,收发线圈偏移现象时有发生,这会降低系统的传输效率和稳定性。因此本文将重点研究磁耦合谐振式WPT系统的线圈偏移问题,提出抗偏移的技术方
学位
国家明确"建立高校分类体系,实行分类管理",鉴于高等学校的培养目标不同,对教学方法和教师的要求也不同,如何促进更多"应用型"教师专业发展成为学校面临的显性问题。本文以华南理工大学广州学院为例,结合本校的教学实践,提出通过构建"应用型"经管教师专业成长平台,促进教师的专业成长。
期刊
随着传统互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)的特征尺寸逐渐达到物理极限,以CMOS工艺为主导的集成电路发展遇到了瓶颈,于是越来越多的纳米技术开始涌现出来,其中量子元胞自动机(Quantum-dot Cellular Automata,QCA)因为其具有超低功耗、较高的运行速度以及较低的延迟成为了CMOS工艺的热门替代品之一
学位
我国是世界上人口最多的沿海国家,国家政策指出:发展海洋经济、海洋科技是推动我们强国战略的很重要的一个方面,一定要向海洋进军,加快建设海洋强国。建设“智慧海洋”战略逐渐走进我们的视野中,海洋基本参数的精细化采集与测量对海洋生物的生长繁殖、海洋环境的保护以及国家军事防御都有不可忽视的意义。海洋盐度是海洋水文测量的要素之一,精确测量海洋盐度也一直是研究的热点,在78实用盐标发布之后,利用电导率可以标定得
学位
介质阻挡放电离子源(DBDI)凭借其结构简单,高效稳定,功耗低等特点,成为近年来国内外学者的研究热点。本课题拟基于介质阻挡放电原理,开发应用于气态样品快速检测分析的质谱离子源-空心电极不锈钢毛细管等离子体电离源(HECPI),构建新型气态样品检测离子源质谱法(HECPI-MS),重点拓展该方法在大气环境监测工作中针对污染源成分快速定性、定量中的应用研究,满足现阶段大气环境污染源现场快速检测的需求。
学位
基于耦合谐振的无线能量传输技术作为无线能量传输一种重要的方式,己经广泛地应用于家用电器、植入式医疗设备、电动汽车、可穿戴设备等众多领域。在实际的工业应用中,收发两端不仅需要能量传输,也需要数据同步传输。目前主流的能量与数据同步方式有两种。一是双链路同步传输技术,即在能量传输链路之外,增加额外的数据传输链路;这种方式容易造成设备冗杂,灵活性与可靠性降低,同时增加了成本。二是共享链路同步传输技术,即利
学位
化学是一门重视实践的学科,而化学实验是高校化学教学的重要组成部分,化学药品的安全有序管理是化学实验得以顺利进行的保障。随着化工行业的发展和高校教育人群的增加,实验室中化学药品使用量逐年增多,而且实验室存放的化学药品种类繁多、性质复杂,传统的管理方式一方面难以满足师生日常使用需求,另一方面缺乏安全管理条件。论文针对高校实验室化学药品管理需求,设计一种新的化学药品管理系统,系统采用了RFID、指静脉识
学位
目前,光伏发电作为一种主要的绿色能源利用方式,已经被日益广泛使用。但光伏发电的使用也对用户和电网造成了不利影响。光伏大规模并网会导致电网中传统发电方式所占比例降低,因此当发生紧急情况时,电网的应对能力较差。光伏发电的波动性还会影响母线的功率平衡,造成电能质量的下降。因此,精确的光伏预测对光伏电站与电网的安全稳定运行十分重要。此外,对用户和电网而言,在对光伏发电功率进行精确预测时,若能够结合储能设备
学位