高锰钢中魏氏渗碳体相变晶体学的电镜研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:wangkaidi58
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
绝大多数金属结构材料中含复相组织,其力学性能受各相的数量、形貌、分布、取向、大小等的影响。随着表征技术的进步,研究组织中细小沉淀相的晶体学形貌才成为可能,然而对大多数材料而言,目前相关知识都不完善。本工作系统地研究了高锰钢中先共析魏氏渗碳体的形貌、相变晶体学、界面迁移模式、表面浮凸效应,力图通过对该系统的研究,提高对化合物沉淀相形貌和相变晶体学的深入认识。利用透射电子显微镜和扫描电子显微镜表征了渗碳体的形貌、晶体学和界面结构,发现实验钢中的魏氏渗碳体以片状和板条状形貌为主,其中片状渗碳体与奥氏体保持精确的Pitsch位向关系,板条状渗碳体所对应的位向关系分散在F-E位向关系附近。片状渗碳体的宽面主要是惯习面,并含特定的高度生长台阶,惯习面本身含周期性分布的携带二次位错的结构台阶。定量表征了两类台阶的几何结构和所携带位错的柏氏矢量,揭示了片状渗碳体宽面的迁移是通过生长台阶的移动实现,并且宽面延伸的尖端会向奥氏体基体释放位错。板条状渗碳体的较宽界面上存在不规则分布的台阶以及取向基本平行的位错,定量表征了位错的线方向及柏氏矢量,经长期等温处理后宽面上的刻面会稳定在(0 0 1)C。此外,还发现了一个前人未曾报道的位向关系,相关惯习面上含三组位错,定量表征了其中两组位错的几何和柏氏矢量。基于择优界面结构奇异性的法则,建立了一个分析择优位向关系和择优界面的集成几何分析方法,包括在倒易空间根据g和?g列分布考查潜在的择优位向关系,在正空间进行GMS团簇分布的图像分析、应用CSL/DSCL模型和O点阵理论计算错配应变场、不变线和二次位错结构,获得了对位向关系、择优界面取向、宽界面上台阶和位错结构实验结果的定量分析与解释,特别是解开关于板条状渗碳体不确定惯习面的疑团。结合聚焦离子束技术、扫描电子显微镜和原子力显微镜研究了魏氏渗碳体的表面浮凸现象,测量了伴随片状渗碳体形成的表面浮凸角,同时根据界面结构模型,估算界面迁移伴随的长程应变场,解释了实验结果。根据界面迁移伴随的长程应变场,通过计算Schmid因子,解释了尖端迁移过程释放位错的柏氏矢量及滑移系。
其他文献
在疾病的早期诊断、细菌和病毒检测、食品安全和环境检测等方面,能够实现对浓度很低的生物分子的定性识别和定量检出具有非常重要的意义。本论文提出了一种灵敏度高、可靠性强的生物分子检测方法,主要基于贵金属纳米粒子对靶生物分子的编码标记,通过暗场显微成像与图像处理方法,实现对编码粒子的成像计数从而实现生物靶分子的灵敏检出。贵金属纳米粒子由于局域表面等离子共振现象的存在,当用全波段的可见光照射时,粒子会对特定
丰富的物态种类使得二维材料成为凝聚态物理学研究中一个极具吸引力的平台。新型的二维体系中,如单层薄膜或堆叠单层而成的异质结构,有望涌现更多新奇的电子特性。本论文主要利用角分辨光电子能谱及其衍生技术深入探究了两类最新实现的二维体系——单层Pt Se2和准晶30?扭角双层石墨烯。本论文第一章中,以石墨烯和过渡族金属硫化物作为两类最具代表性的成员,简要介绍了二维材料家族。我们讨论了这两类材料在其厚度降至单
在过去的几十年,过渡金属氧化物由于其丰富的物性和广泛应用一直吸引着人们的研究和关注,并发现了一系列新奇的现象,比如铜氧化物中的高温超导、稀土镍酸盐中的金属绝缘体相变、锰氧化物中的庞磁阻效应等。在这些材料的研究中,最重要的课题之一就是通过各种手段对其性质进行调控,比如压力或外延应力、化学掺杂、磁场、电场等。自1947年世界上第一个晶体管问世以来,基于电场调控界面电荷密度的方法成为一种普适的手段,被广
作为一种强电荷-晶格-自旋耦合的材料,多铁材料蕴含丰富的物理现象,拥有广阔的应用前景。单相多铁材料由于在单一体系中同时具备多种铁性有序,因此为多铁耦合机制的探究提供良好的平台,是多铁材料中的一个重要分支。六方锰氧化物和铁氧化物作为单相多铁材料的典型代表,因其特有的铁电性、铁磁性和耦合性质而具有独特魅力,同时也仍蕴含着丰富的、亟待解决的科学问题。电子显微学方法是一套基于透射电子显微镜发展而来的系统的
硼化合物及材料在化工、航空航天、材料等领域都具有极其广泛的应用,如超硬材料、半导体电子器件以及具有抗菌特性的生物化合物等。2015年二维硼材料—硼墨烯的成功合成又为新型硼材料的设计和发展提供了基础,开启了硼基平面材料的研究大门。而纯硼团簇的研究相比于碳团簇相对较少,这是由于硼元素缺电子特性导致的成键复杂性以及硼团簇随尺寸的增长所表现的结构多样性。团簇大小数量级一般在纳米范围,可表现出很强的量子效应
超薄二维(2D)纳米材料作为一种重要的材料,在许多领域都显示出良好的应用效果,如电子/光电子、能源存储与转换、传感器和催化剂等。这些取得的成果推动了通过实现新的功能2D材料来扩展2D材料家族的全面研究工作,并需要创新的合成路线。因此,二维层状材料一直是研究的热点,这主要是由于二维层状材料相对较弱的平面间范德华力使其能够制备成二维纳米材料,其中液体和机械剥落起了重要作用。这些材料包括半金属石墨烯、半
新奇二维结构的研究一直受到广泛关注。由于其中的量子限域效应明显,二维材料常伴随拓扑、超导、铁磁和电荷密度波等丰富的量子现象。目前,对二维材料的研究主要集中在从堆叠的层状体相中剥离出的二维结构。而对于自然界中大量存在的非层状材料,它们在二维极限下的结构,往往具有与体相不同的元素配比和原子构型,因而展现出不同寻常的电子特性。这一大类二维材料还没有被广泛研究。本论文基于第一性原理计算,寻找与设计非层状材
化学反应及纯化和分离等过程多是在溶液体系中进行的,因而溶液化学研究具有重要意义。其中,一个关键问题就是深入研究溶液的结构及其物化性质。溶液的微观结构较固体和气体而言更为复杂,酸碱性是溶液诸多性质中最为重要的一个。本论文借助超额红外光谱,同时结合红外光谱、核磁共振波谱和量子化学计算研究了离子液体与共溶剂体系的溶液结构和分子间相互作用,还尝试了借助特定官能团的光谱特征构建溶液微观结构和物化性质的探针方
近年来,单原子催化剂在非均相催化领域引起了广泛关注。单原子催化剂不仅原子利用率高,而且在催化CO氧化、水煤气转换、醇的选择性氧化、二烯烃或炔烃的选择性加氢等诸多化学反应中表现出优异的活性及选择性。然而,目前单原子催化剂也面临着诸多挑战,比如单原子在反应过程中的团聚、单原子负载量较低、单原子和纳米团簇孰优孰劣、单原子在特定反应条件下的局部结构等问题。本论文运用密度泛函理论方法,系统地研究了单原子催化
超薄平面结构赋予二维原子晶体诸多优异与新颖的物理、化学性质,在电子器件、催化等领域呈现出广阔的应用前景。这类超薄晶体材料在厚度方向上仅有少数原子,其性质呈现出高度的结构依赖性,因而这类材料的结构表征对其性能调控与实用化至关重要。然而,超薄的特性使得这类材料在表征过程中易发生结构损伤。目前常用于表征二维材料物理结构的显微、光谱及光学等手段具有各自的局限性,尚缺乏可无损表征这类材料的普适性方法。除物理