细粒度图像分类场景下的小样本学习方法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:q5108947
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
细粒度图像分类是计算机视觉领域中的一个重点研究方向,由于细粒度图像数据存在难以收集与标注昂贵的特性以及细粒度类别间相似度高的特点,其识别难度往往远高于通用图像数据的识别。现有的细粒度图像分类方法尽管在一定程度上缓解了类间差异小的问题,但这些方法的训练却倾向于依赖大量数据,而在样本量少的情境下无法很好地完成分类。为了解决上述问题,研究人员提出了针对细粒度图像分类场景下的小样本学习方法,这些基于小样本学习框架的方法挖掘图像的局部信息,使模型尽可能地减小对数据量的依赖。但这些方法却忽略了特征之间的关系对于分类效果的影响,从而导致分类结果并不理想。本文基于现有的小样本框架,并结合特征之间的关系,提出了两种针对细粒度图像分类场景的小样本学习方法。在充分考虑特征之间关系的基础上,本文提出两种新的小样本学习模型用于解决小样本细粒度图像分类问题。论文的主要工作如下:(1)提出了基于全局-局部特征融合的小样本细粒度图像分类方法。该方法的核心思想是利用全局特征与局部特征之间的关系构建注意力图,以注意力机制提升局部特征的判别性,从而提升分类能力。我们应用原型学习的思想得到类别的全局特征,并借助该特征构建类别相关注意力图(Class-aware Attention Map,CAM),利用该图可以使模型更关注关键性局部区域。同时,在模型中引入了一种基于局部特征之间关系计算相似度的度量学习方法,该方法对特征进行了扩充以提升小样本学习的准确率。该模型还设计了联合损失函数来对全局特征的影响程度进行调节,使得模型能够达到最优的状态。最后,通过在多个细粒度图像数据集上的对比实验验证了该模型的有效性,同时利用可视化以及消融实验验证了模型各部分对模型性能的影响。(2)提出了基于局部特征组合的小样本细粒度图像分类方法。该方法的核心思想是设计了局部特征组合机制和局部区域注意力机制用来提升特征的表示能力,从而提升模型的分类能力。由于直接使用局部特征分类会引入噪音特征,同时特征分布散乱无法很好地对图像、类别进行表示,因此我们引入了局部特征组合机制来对局部特征进行整合使得新的代表特征能够更加完整的描述类别和图像。基于新的区域代表特征,本文提出了一种区域注意力机制用于找到不同区域的重要性,利用该重要性向量来指导预测结果,一般来讲,更具判别性的区域对分类影响大,反之则小。最后,通过在细粒度图像上的对比实验验证了该方法的性能,同时利用消融实验验证了方法各部分的有效性。
其他文献
在传统多标记学习算法中,用于训练的数据集中的每个样本被精确标注了多个相关标记,但由于近年来数据量急剧增长,精确数据集在现实情况中很难获取。现有的多标记学习算法对于不精确数据集的考虑通常是针对标记缺失的情况,然而在很多情况下数据集中的一个样本只是被大致分配了一组标记,该组标记中除相关标记以外还有一些不相关的噪声标记。为了解决多标记学习中的标记冗余问题,近年来提出了一个新的学习框架,即偏多标记学习框架
多模光纤内部不同模式的干涉会在光纤端面处形成具有复杂亮斑分布的光斑图样。由于光斑的形成与多模光纤的结构以及所处环境等具有密切联系,因此可以利用光斑的检测和处理对光纤所处状态进行传感。随着光斑图样检测技术与图像处理技术的日益发展,基于光斑的光纤传感器已经在多个领域表现出其独特的优越性,具有很高的研究价值。本文对多模光纤在不同弯曲半径下的输出光斑进行了仿真及实验研究,基于深度学习的方法,通过对多模光纤
多能谱CT(Computer Tomograph,CT)利用光子计数探测器直接将光信号转化成为数字信号,能够获得不同能量段的成像。多能谱CT可以利用K-边成像降低辐射或造影剂剂量,还可以利用多能谱特性提高软组织对比度。然而多能谱CT图像在物质浓度较低时,物质与背景很难被区分开来;当两种原子序数很接近的物质距离很近时,在成像图中会混在一起而难以区分。超分辨率图像重建旨在提高图像分辨率的同时解决物质与
相比传统的直流电机,永磁同步电机(PMSM)简化了结构,降低了成本,提高了控制性能,在高精度伺服控制领域得到了广泛应用。摩擦力矩干扰是影响永磁同步电机伺服系统精度和鲁棒性的重要因素之一。利用现代干扰补偿控制理论,设计非线性摩擦干扰控制器,补偿永磁同步电机伺服系统的非线性摩擦力矩干扰,提高伺服系统的位置和速度跟踪性能,具有重要意义。针对永磁同步电机位置伺服系统中存在的摩擦力矩干扰,本文结合分数阶控制
随着物联网技术和产业的飞速发展,催生了许多新兴的物联网应用场景,例如水下环境的信息监测、野生动物信息采集、山区道路危险预警等。现有的无线通信网络在缺少基础设施的场景下很难有效运行,而机会网络利用网络节点之间的相遇机会进行数据传输,无需基础设施,可以更好的适应这些新兴应用场景。由于无线网络节点之间搭建的临时通信网络是高度动态且部分连通的,节点之间可能不存在完整的连接路径。机会网络采用“存储-携带-转
得益于弹性按需的服务模式和允许网络广泛访问的特性,云服务在互联网上的数量呈爆炸式增长,导致云服务市场中充斥着大量功能相似但服务质量(QoS)不同的同质化云服务。在这种情况下,用户很难确保所选择的云服务能够在特定环境中满足自身的完整需求。因此,结合推荐技术,对QoS进行准确和个性化预测成为了帮助用户选择与自身匹配程度较高的云服务的必要条件。近年来,基于QoS预测的云服务推荐在服务计算领域持续引起关注
近年来,智能决策与控制技术得到了突飞猛进的发展,极大的提升了机器人应对复杂实际问题的能力,并逐渐发展为国家层面的战略。电脑鼠是一种嵌入式移动机器人,能够自主探索未知迷宫,并实现最短路径冲刺。为了在狭小复杂的迷宫中高速运行,电脑鼠对控制与决策的性能要求较高,长期处于机器人领域的研究热点。强化学习技术能够让智能体从环境中总结规律,以“试错”的方式提升决策性能,是一种重要的机器学习方法。本文针对迷宫探索
随着物联网、5G等技术的发展,每日新增的数据量呈指数式爆炸性增长,这些来自于各种新兴应用场景如远程医疗、智能汽车驾驶、智慧城市等方面的数据,对服务的URLLC(Ultra Reliable Low Latency Communication,超可靠低延迟通信)提出了更为严苛的要求。为更好的满足这些要求,移动边缘计算(Mobile Edge Computing,MEC)应运而生。而移动边缘计算中一个
随着各种无线应用的不断涌现,无线网络对频谱资源的需求不断增多。而无线频谱资源的不足严重限制了无线网络的发展。可见光通信凭借其丰富的频谱资源、低廉的成本、超高的传播速度成为一个极具前景的无线传输技术。在可见光通信中广泛存在着由于器件非线性引起的非线性失真。而可见光通信系统通常采用的直流偏置光正交频分复用(DCO-OFDM)调制方式存在峰均功率比高的问题,信号容易进入非线性区域,产生非线性失真。当前对
光纤弯曲传感器在建筑、航空、医药、平面度监测、机械结构弯曲角度测量等多个领域都有着广泛的应用和重要意义。随着材料技术的发展,传感器在朝着精确、灵敏、智能化、网络化、低成本、易于加工的方向发展。光纤传感器由于其固有的优势受到了科研人员的广泛关注,而增敏型塑料光纤弯曲传感器有着制作简单,可判断弯曲方向,能有效增大光纤弯曲时的传输损耗灵敏度和动态测量范围,可用于分布式光纤传感等优点。随着图像处理器等高性