一种新型的群智能优化技术的研究与应用:麻雀搜索算法

来源 :东华大学 | 被引量 : 0次 | 上传用户:bluelink
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
优化问题是科学研究和工程实践领域中的热门问题。经过近几十年的发展,群体智能优化算法以其简单、灵活、高效等特点,已成为解决全局优化问题的主要技术。经典的群智能优化算法有粒子群算法(PSO)和蚁群算法(ACO)。一方面,这些算法主要是在搜索过程中引入了随机性,能够有效的避免陷入局部解。另一方面,大多数需要优化的实际工程问题都伴随着大量的局部解。因此,采用群智能优化算法来获得全局优化问题中的最优解具有重要的现实意义。
  本文基于麻雀种群中的觅食行为和反捕食行为提出一种新型的群智能优化技术:麻雀搜索算法(Sparrow Search Algorithm,SSA),并将该算法成功应用在三维无人机航迹优化问题上。本文主要研究工作如下:
  (1)为了解决传统优化算法易陷入局部最优等问题,提出麻雀搜索算法。具体地,我们根据麻雀的觅食行为和反捕食行为制定出相应的规则,然后,根据这些规则构建出相对应的数学模型,提出在搜索空间中具有全局探索与局部开发能力的算法。
  (2)本文设计了三组仿真实验用以验证麻雀搜索算法的性能。在第一组仿真实验中,对七种单峰测试函数进行优化,验证算法的收敛速度和局部开发能力;第二组实验是对五种多峰测试函数进行优化,用来验证算法逃离局部极值的能力和全局探索能力;第三组实验选取了七种固定维度测试函数进一步验证算法的收敛速度、稳定性和收敛精度。对算法的求解速度、稳定性和收敛精度的综合分析表明,麻雀搜索算法与灰狼优化算法(GWO)、粒子群算法(PSO)和引力搜索算法(GSA)相比具有很强的竞争力。
  (3)本文将麻雀搜索算法应用于三维无人机的航迹优化过程。首先,建立了用于三维无人机航迹规划的环境模型,其中包括基准地形、障碍区域和威胁区域。然后,建立了无人机飞行综合代价评估模型作为目标函数,并通过麻雀搜索算法寻找到最佳的飞行路线。最后,对求取结果进行分析与总结,验证本文所提算法在三维无人机航迹规划中的有效性和可行性。
其他文献
近几年来,被动(辐射计)毫米波遥感被认为是一种适合于许多安全相关应用的工具。这些是用于衣物下隐藏物体检测的人员筛选,或者是用于车辆或飞机的增强视野,仅举例子。辐射计仅具有记录自然热辐射功率的接收器,通常使用环境和宇宙背景辐射作为自然照明源提供场景的发射和反射特性。场景及其对象的被动签名根据目标及其散射特性以及实际的照明特性而有很大不同。一个例子被认为是辐射鉴别装置用于比较两个以下斑点的天线波束在远
由于物理条件的限制和安全因素等原因,需要满足硬约束条件的状态受限控制系统大量存在于各类实际工程当中.如何在保证满足状态约束的前提下,尽量提高系统的动态性能及鲁棒性等问题,无论在理论还是在应用上都有着十分重要的意义.近年来,在状态受限系统控制理论领域涌现出了许多新的方法,但是仍有很多亟待解决的重大问题.本论文将讨论几类典型的状态受限系统的控制方法及其应用问题,主要研究结果和贡献如下:  一、针对含输
非线性现象普遍存在于实际生产和生活中,所有的实际工程控制系统都是非线性的.因此,对非线性系统的反馈控制问题研究是控制理论领域的一个热点,具有重要的理论指导意义和实际应用价值.在实际工程中,系统状态往往并非全状态可测,这就需要研究输出反馈控制问题.本文针对几类不同的非线性系统,利用Lyapunov泛函方法、齐次方法、压制方法和采样控制方法等,设计出相应的输出反馈控制器和采样控制器,研究输出反馈镇定跟
近几十年来,随着数字计算机技术、通信技术和网络技术的快速发展,网络化控制系统因其便于维护和安装、拓展性好、各个环节信息交互可靠等优点,在许多实际工业生产中(如移动传感器网络、分布式电力系统、智能交通系统等)具有广泛的潜在应用价值。网络化控制可以通过有线/无线网络、智能传感器、数字技术、通信技术等手段将系统之间的各个环节通过计算机网络连接起来,从而实现高效的信息交互,更好地完成控制任务。与此同时,网
在互联网飞速发展的今天,网络在给人们提供丰富信息资源的同时,也给海量图像数据的整理和归类带来了空前的难度。为此,各种图像分类技术应运而生,其中场景图像分类是该研究领域的一个重要分支。场景图像分类是通过计算机将表达场景属性的各种信息转化为具体的特征描述,并构建合适的特征表达模型,进而实现场景图像的自动标注和分类,广泛地应用在图像分析、整理、视频摘要及机器人导航等机器视觉应用领域中。  场景图像是多个
学位
随着三维扫描技术与计算机图形图像技术的发展,三维体数据模型的数量迅速增长,并广泛应用于医学虚拟手术规划、三维地质体建模、机械CAD设计、气象预测以及流体力学模拟等领域。因此,如何实现体数据模型快速而有效的检索具有重要的理论意义和实际应用价值。目前体数据检索方法多是基于体数据切片的几何与非几何特征进行,其实质是基于二维切片的颜色、纹理及形状等特征进行的,这势必会丢失体数据的三维空间特征,诸如空间形状
大数据环境的需求下,研究对象一般具有非线性、非凸、高维、超多目标等多种性质或者其中一种。如何对具有高维甚至超高维特征的优化问题进行有效求解,成为目前计算智能领域的一个严峻挑战。受物质在不同相态下丰富运动规律的启发,通过对其运动特性的观察和分析,抽象出自然现象中所蕴含与之相关联的搜索特性及其内在信息处理机制,提出了一种基于物态运动原理的计算模型,在此基础上设计了几种不同类型的优化算法,以解决传统智能
不确定性广泛存在于各类系统中,自动控制系统也不例外。这些不确定性来自于系统外部扰动、内部联结与耦合、子系统故障、参数波动等,不确定性的存在严重影响着系统的正常运行。自从有了控制理论以来,对不确定性的研究就从未停止,反馈控制、自适应控制、鲁棒控制与系统辨识都是解决不同类不确定性的典型代表。试图通过控制与辨识的方法使系统目标间的指标达到某种平衡,这种方法被称之为对偶自适应控制,在千禧之年其被IEEE
随着科技的发展,现实中的优化问题越来越复杂,采用传统优化方法已难以进行有效求解,故而迫切需要探索一些高效的智能优化方法。受自然界中某些现象或过程的启发,研究人员提出了多种演化算法(Evolutionary Algorithms,EAs)范例,为复杂优化问题的求解提供了新的途径。然而,随着迭代的进行,演化算法的种群多样性难以维持,从而易导致全局勘探与局部搜索的失衡。此外,在求解不同类型的优化问题时,
学位
与传统悬架相比,空气弹簧的独特性赋予了汽车空气悬架更多性能优势,通过调节车身高度和对阻尼实现自适应控制,空气悬架不仅可以有效改善车辆在行驶过程中的乘坐舒适性、操作稳定性和行驶安全性,而且能够在一定程度上提高车辆的燃油经济性,已成为汽车工程界的研究热点之一。  车高调节以及其过程中的整车姿态控制是电控空气悬架(Electronically Controlled Air Suspension,ECAS