石墨二炔的气体分子电催化活化性能及气敏特性理论研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:hifithink
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业生产过程中产生的CO2和NO2,NO,NH3在大气中的过量积聚能直接影响地球环境,会形成温室效应和酸雨,并进一步危害人类的健康。因此,将这些小分子资源化利用或即时检测浓度有利于保护环境和维护生命安全。自从石墨烯材料被发现之后,二维(2D)材料就因其独特的表面形态和优异的物理化学性质而引起研究者广泛关注。石墨二炔(GDY)作为存在一定带隙的类石墨烯材料,由sp和sp~2杂化C原子组成的结构赋予其独特的可调谐表面化学性质,较大的比表面积也意味着该材料在催化剂和传感器领域具有潜在的应用前景。本文基于密度泛函理论第一性原理计算的研究方法,对单层GDY进行单金属原子负载、非金属单原子掺杂的修饰改性手段,设计了基于GDY的电化学催化剂和气体传感器。本文的主要研究内容可以总结为以下两个部分:1、研究了第四周期过渡族单金属原子负载在GDY表面时体系的稳定性和相对应体系的二氧化碳还原(CO2RR)催化活性。计算结果表明除Zn外的Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu单金属原子修饰体系在热力学和动力学上均是稳定的。接下来进一步探讨了整个反应的最优能量路径,发现Ni、Cu负载体系的决速步所需反应自由能分别为0.941 e V和0.65 e V,较低的反应自由能表明在这两种体系表面催化生成终产物CH4所需克服的能垒较低。因此基于Ni、Cu修饰的GDY表面催化活性得到极大的提高,适合被用来开发CO2RR催化剂。2、作为对比性研究,本文继续就GDY材料表面对一些环境不利气体小分子(CO,CO2,CH4,HCHO,H2S,SO2,SO3,NO2,NO和NH3)的气敏性进行了探讨,吸附结果表明初始的GDY对这些气体选择性较弱。接着考虑引入B、N单原子进行表面掺杂改性,发现B原子修饰后的GDY(B-GDY)对NO2,NH3和NO具有良好的选择性。相关的电子结构被进一步计算,Bader电荷数值结果表明这三种气体分子吸附后与B-GDY表面间存在明显的电荷转移,且掺杂体系的恢复时间较短,说明B-GDY适合作为检测NO2,NO和NH3气体的传感器基底材料。在B-GDY表面添加不同数量的H2O分子来模拟一定湿度的环境,发现随着湿度逐渐增大,B-GDY对这三种特定气体的选择性逐渐增强。也考虑施加外加电场来调谐B-GDY对NO2,NO和NH3的气体传感性能,计算结果揭示了电场大小和方向均能影响基底材料对这些特定气体的选择性,且能改变B-GDY的带隙,这也说明外加电场是一种有效的调谐气体传感性能的方法。我们的研究结果有利于理解GDY材料的相关电子性质,并考虑了该材料在电催化还原和气体传感方面的潜在应用,为将来的进一步实验研究提供了合理的理论指导与机理证明。
其他文献
表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)技术为分子痕量检测提供了一种新的方法。SERS基底是表面增强拉曼散射技术的关键,银具有超宽表面等离子体共振响应范围且是最优的表面等离子体材料,因此广泛应用于SERS研究中。光纤的引入使SERS技术向原位检测和远程监测等方向发展。本文探究影响银纳米材料形貌及尺寸的因素,以及银作为SERS基底对SERS性能
学位
硅橡胶材料是我们生活中不可缺少的一部分,许多器具和电子材料都会用到硅橡胶。硅橡胶有质轻、流动性好、全体绝缘等优点。但是,大部分的硅橡胶导热性较小,高温使用容易影响电子材料的寿命。因此,本论文选用高导热绝缘的氮化硼(h-BN)作为导热填料,旨在不破坏其流变性能的情况下,探究硅橡胶的导热绝缘性。主要的研究内容和结果如下:(1)小尺寸的填料由于自身独特的性质更能很好地提高基体导热性。因此,本章选用氮化硼
学位
微孔发泡注塑成型工艺因能产生大量均匀微小的泡孔,大幅降低材料的重量、提高材料的尺寸稳定性和隔热隔音性能,广泛的应用于汽车等领域,但泡孔的存在会减少材料在受载时的承载截面积,尤其当泡孔结构较差时,会使得发泡材料的韧性急剧降低,这极大的限制了这项工艺的应用。由于PP自身的熔体强度较低,纯PP发泡材料中的泡孔结构和韧性较差。本文基于PP发泡材料中泡孔结构和韧性较差的问题,通过加入不同的弹性体(POE、E
学位
2030年前“碳达峰”、2060年前“碳中和”等国家重大战略目标的提出,进一步促进了绿色新能源产业的发展。氢能作为化石能源的理想替代品,因此受到人们的广泛关注。电解水制氢是现有氢气制备途径中最具有发展潜力的方法之一,能够促进产氢的脱化石资源、低碳绿色和分布式发展。然而,电解水技术目前严重受限于缓慢的析氢、析氧动力学及大量昂贵的Pt、Ru、Ir等Pt族贵金属催化剂的使用。因此,合理构筑痕量贵金属修饰
学位
氧化石墨烯是一种二维片层纳米材料,作为石墨烯最重要的衍生物之一,具有优异的物理和化学性能,因此氧化石墨烯被作为增强纳米复合材料的理想填料。但是,由于氧化石墨烯层间存在范德华作用力和π-π堆叠作用,使其片层间发生不可逆的堆叠,降低了其在基体材料中的分散性,影响氧化石墨烯对基体材料的功能改性作用。因此解决氧化石墨烯在基体材料中分散问题是制备氧化石墨烯增强复合材料的关键。目前,氧化石墨烯的改性方法主要有
学位
有机-无机杂化金属卤化物钙钛矿因其优异的光电特性,丰富的组成结构以及可低成本溶液加工制备等优势成为第三代薄膜太阳电池重要的半导体材料。经过十年左右的发展,钙钛矿太阳电池的光电转化效率已经达到25.5%,已经超过其他传统薄膜太阳电池。然而,三维结构钙钛矿稳定性较差,这推迟了钙钛矿光伏的商业化进程。二维钙钛矿不但具有可调的结构和能带,而且具有非常优异的稳定性,成为钙钛矿太阳电池新型半导体材料。层间阳离
学位
2×××铝合金环件在航天领域的广泛应用,要求2×××铝合金环件在轧制成形工艺和轧制后环件的强度和塑性均能满足航天标准。因此阐明2×××铝合金异形截面环件的轧制成形规律和不同热处理机制对微观组织的影响作用至关重要。本文阐明了2×××铝合金异形截面缩比环件的轧制规律、Al-Cu合金的强韧性机理、不同热处理制度对2×××铝合金和2×××铝合金异形截面缩比环件的强化机理。通过Abaqus有限元数值模拟软件
学位
羟基磷灰石(HA)作为脊椎动物骨骼和牙齿的主要无机成分,具有促进骨生长的功能,但是目前应用于骨修复领域中的HA陶瓷的力学性能仍不理想,为了弥补这一缺点,将生物相容的高强度金属与HA结合,制备生物活性和机械可靠性良好的生物复合陶瓷被认为是有效的手段。本文探索性地将金属钽(Ta)和HA进行复合,成功制备了HA/Ta和HA/Ta/BG复合陶瓷,为制备新型HA基复合陶瓷提供可行的方案和实验依据。(1)基于
学位
许多潜在的新型电子器件的蓝本都建立在新材料基础上,理想化的多铁性材料就属于其中最为出色的新材料之一。本论文所进行的工作主要是针对多铁性材料中的M型六角钡铁氧体结构进行研究,旨在合成Ba Fe12O19陶瓷和Ba0.4La0.4Fe12O19陶瓷,并研究它们的多铁性能。合成方法采用的是前驱体化学共沉淀法合成粉体,再高温烧结等热处理制得陶瓷样品。对于Ba Fe12O19陶瓷的研究,首先研究烧结温度对显
学位
随着世界各地城市化和基础设施建设速度的加快,日益增多的水泥基固体废弃物对经济、环境和社会造成了巨大的负担;且为了满足越来越苛刻的环境法规和国际协议,对水泥基固体废弃物的再生资源化利用提出了更高的要求。针对利用废弃混凝土制备的再生胶凝材料(RBMs)在标准养护条件下早期力学性能发展慢,耐久性差等应用问题,论文依托国家自然科学基金项目“水泥石脱水相快速碳化硬化机理及其应用基础研究”(No.519722
学位