革屑水解产物的制备及其在柔性超级电容器中的应用研究

来源 :烟台大学 | 被引量 : 0次 | 上传用户:mytollen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
制革行业每年会产生大量的固体废弃物,造成严重的环境污染。为了满足可持续发展的需求和实现制革行业的健康发展,将皮革固体废弃物进行高值转化具有重要意义。超级电容器具有超高的功率密度,长的循环寿命以及快速的充放电速率,受到了广泛关注。本论文基于超级电容器的研究现状,提出以皮革固体废弃物为原料,将皮革固体废弃物水解物应用于超级电容器中。重点研究了皮革固体废弃物水解液复合电极、高强度一体化柔性超级电容器的制备以及全水凝胶超级电容器的构筑,探索了皮革固体废弃物在储能领域的应用,实现皮革固体废弃物的高值转化。具体研究内容如下:首先,使用酸法水解,在蓝湿革屑中加入磷酸,获得废革屑水解液。然后以不同浓度的水解液在苯胺单体聚合过程中对其进行掺杂,制备了超级电容器复合电极材料。该电极无需外加粘结剂和导电填料,可以自粘结在电极集流体上。电化学测试结果表明,该电极在0.1 A/g的电流密度下,最大比电容值可以达到287.7 F/g,在5000次循环充放电后比电容值仍能保持初始比电容值的67%,表现出了良好的电化学性能。其次,将蓝湿革屑水解制备出高性能明胶,然后以该明胶水凝胶为基底,原位生长导电聚合物聚吡咯,制备出具有明显三层夹心结构的一体化柔性超级电容器。利用霍夫梅斯特序列,通过电解质盐溶液增强水凝胶疏水相互作用力,从而显著改善了该超级电容器的力学性能。所制备的一体化超级电容器具有219 m F cm-2的高面积比电容、19.44μW h cm-2的高能量密度以及良好的循环寿命。可在弯曲、拉伸应变下仍保持良好的电化学性能,并展示出良好的自愈合能力。最后,以蓝湿革屑水解制备的明胶水凝胶为原料,通过物理和化学交联法对水凝胶进行了双重交联。随后,将导电高分子聚吡咯引入到水凝胶内部,制备了水凝胶基复合电极。最后将该水凝胶电极与废革屑直接水解获得的水凝胶电解质进行组装,制备了高性能全水凝胶柔性超级电容器。该柔性超级电容器能保持稳定的能量输出,最大比电容值可以达到426.93 m F cm-2,能量密度为37.95μW h cm-2,同时最大拉伸应变可以达到90%,显示出了优异的电化学性能。
其他文献
随着绿色化学发展,环己烯水合法因其环境友好,比其它工艺更经济的特点,受到越来越多关注。但由于该反应体系是液-液-固三相反应体系,催化剂具有亲水性处于水相底部,难以与油相接触,使得环己烯转化率偏低。因此,本文通过对HZSM-5分子筛改性来提高环己烯转化率,并通过计算探索环己烯水合反应能垒,验证分子筛改性的可行性,为该工艺工业化提供理论基础。(1)通过正辛基三甲氧基硅烷(n-octyltrimetho
学位
输流管道在工程中具有广泛的应用,管道中液体流动引起的振动是其失效的一个重要原因,开展管道结构减振研究具有重要的工程应用价值。本文以某一特定参数的T型输流管道为研究对象,首次将本科研团队研发的锰铜高阻尼合金减振功能材料应用于T型输流管道减振设计中,系统地分析了锰铜阻尼合金三通部件对于T型输流管道动力学特性的影响,采用近似模型技术对T型输流管道减振方案进行了优化设计,确定T型输流管道中锰铜阻尼合金部件
学位
能源危机日趋严峻,可控核聚变是解决能源危机的最终手段。核聚变反应堆中的第一壁面向等离子体材料处于高能中子的辐照之下,辐照引起的缺陷会导致材料的硬化、膨胀和脆化,引起材料力学性能的退化,甚至会导致材料的失效。因此对第一壁面向等离子体材料的选择尤为重要,体心立方材料钨(W)因其高熔点和良好的辐照耐受性被认为是核聚变反应堆中最有前景的第一壁面向等离子体材料。刃位错是晶体材料中的一种重要缺陷,在中子辐照的
学位
棉的极限氧指数(LOI)值约为18.0%,易燃,燃烧后纤维断裂、布面破损。涤纶LOI值约为20.8%,受热容易软化,生成熔滴,且发烟量大。因此,本论文设计制备出新型氮磷阻燃剂,用于棉、涤纶织物的阻燃处理,弥补棉的易燃缺陷,解决涤纶的易燃、燃烧释放大量熔滴及发烟量大的问题,为纺织品的阻燃改性提供了新的阻燃剂选择。其中:(1)以季戊四醇为炭源、磷酸为酸源,制备得季戊四醇磷酸酯,添加五氯化磷(PCl5)
学位
全氟环丁基芳基醚(PFCB)聚合物是一类结构新颖的非晶半氟化聚合物,因其独特的性能使这类聚合物具有广泛的、潜在的应用价值。利用全氟环丁基芳基醚的含氟结构与硅氧烷的有机硅结构构建全新的氟硅结构,是有机硅化学与有机氟化学的新融合,具有重要的研究价值。本论文以合成含全氟环丁基芳基醚结构的高温硫化氟硅橡胶为研究目标,首先合成了主链含全氟环丁基芳基醚结构的多乙烯基硅油、含氢硅油,然后以其为交联剂成功制备了过
学位
随着服役时间的增加,油气管线会受到外部环境和内部输送介质的双重腐蚀,腐蚀缺陷的存在造成油气管线承压能力下降,甚至导致爆破和泄露发生。为确保油气管线能够安全运行,准确预测含均匀腐蚀油气管线的爆破压力和计算含均匀腐蚀油气管线在爆破极限状态下的可靠度具有重大的理论意义和工程实用价值。首先建立预测含均匀腐蚀油气管线爆破压力有限元模型,并根据爆破实验结果验证有限元模型的准确性,在此基础上研究探索均匀腐蚀缺陷
学位
关节软骨是人体承受力学载荷的重要组织,其周围的生理环境复杂。先天畸形、突发性外伤或者其他退行性病变会导致骨关节炎等疾病的发生,以上疾病逐渐成为影响人类健康的重大问题,关节修复的需求也日益增加,因此深入研究关节软骨力学性能并确定其材料参数,揭示其变形机理是生物力学领域重点关注的课题之一。论文以袋鼠肩部关节软骨为研究对象,模拟实际压痕实验,采用超弹性本构模型进行有限元建模仿真。基于直接反问题神经网络和
学位
石油、天然气是人类社会的主要能源和资源,其勘探依赖于钻井工程。作为实现钻井工作的重要部件,钻杆在狭长井筒内转动,受力情况复杂,振动剧烈。钻杆振动危害极大,不仅会造成钻杆疲劳失效、钻头过度磨损,甚至还会引发井下事故,致使井筒报废。本文针对钻杆纵-扭耦合非线性振动系统的动力学行为进行了理论与数值研究,主要工作内容如下。首先,基于钻杆系统物理模型建立两自由度集中参数模型,考虑钻头种类及相应的钻头与地层接
学位
随着纳米颗粒研究的迅速发展,纳米颗粒被广泛应用于光、电、磁等领域。金纳米粒子结合了自身的许多特性,为生物医学领域纳米颗粒进入细胞的研究提供了良好的载体。本文利用分子动力学从微观分子水平上模拟研究了具有疏水性金纳米粒子的不同配体密度、不同浓度的带电金纳米粒子对由DPPC、POPG、CHOL和SP-B多肽组成的单层磷脂膜的影响,具体工作如下:(1)构建了磷脂膜模型,同时构建了金纳米粒子模型,并用带电配
学位
近年来随着建筑行业规模的增长和生产自动化水平的提高,塔式起重机作为现代建筑施工中不可或缺的大型起重吊装机械被广泛应用。同时由于施工现场环境复杂和安全监控设备智能化程度欠缺等因素,致使塔机安全事故频繁发生,造成人员伤亡和财产损失。在上述背景下,为有效减少塔机在作业过程中事故的发生以及提高塔机各项安全系数,本文针对塔机作业过程中存在的安全隐患问题对塔式起重机安全监控系统进行研究,主要研究内容如下:(1
学位