论文部分内容阅读
通过分解水制取氢气是开发清洁能源和可再生能源最可行的方式。催化剂的研究是降低反应能垒,提高反应效率的关键。应用密度泛函理论,本文首先系统地研究了碱土金属卟啉和过渡金属卟啉MPP(M=Mg、Ba、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn)在中性态(MPP)和失电子态(MPP+)下对水分子分解的催化效果。结果显示,无论卟啉分子是在中性态还是失电子状态,水分子都倾向于分离出氢质子。当卟啉是中性态时,水分子分离能是正值,说明分离反应需要吸收能量,然而卟啉在失电子状态时,水分子的分离能是负值,分离过程放出能量,说明反应极容易发生。通过Bader电荷分析我们总结出了电荷转移量与分离能的大小的关系。对于同种卟啉,水分子和卟啉中心金属原子向基底外层原子转移的总电荷量越多,水分子分离出氢质子的势垒越低。在所有卟啉分子中,钛卟啉失电子态催化水分子分解的势垒最低,放出的能量最多,所以我们系统地研究和分析了水分子分别在钛卟啉的中性态(H2O+TiPP)、失电子态(H2O+TiPP+)和得电子态(H2O+TiPP-)下分离能的情况。在中性态和失电子态时,水分子都倾向于分离出氢质子,但是,在得电子态水分子倾向于分离出氢原子。对应体系的分离能的排序是-2.71 eV(H2O+TiPP+)<1.23 eV(H2O+TiPP)<1.31 eV(H2O+TiPP-)。通过结构图的对比分析、Bader电荷分析以及电子态密度图的分析,我们认为水分子和钛原子向基底外层原子转移的电子数越多,会导致O-Ti键的极性增大,相互吸引作用增强,而水分子的氢原子上占有的电子数越少,也就是说质子更多的裸露在外面,因此Ti原子对氢原子的排斥力越强,使其很容易以质子形式分离,分离的势垒也就越低。钛卟啉失电子状态催化水分子分离第二个氢质子也是放能过程,电荷的对比分析也符合上述结论。当两个氢质子分离之后,还剩氧原子吸附在卟啉基底上,氧原子的分离势垒高达7.32 eV,不容易分离,说明这个氧修饰的钛卟啉(OTiPP)结构是一个稳定结构。最后我们研究OTiPP失电子状态对水分子分解的影响,发现两个氢质子的分离总共会放出2.38 eV的能量,而一个氧原子的分离只需要吸收0.72 eV的能量,说明OTiPP可以先后将水分子上的氢质子和氧原子都分离出去,从而实现高效可循环的催化过程,而且反应过程中没有附加产物,不会造成任何污染。因此我们得到了高效清洁可循环催化水分解的催化剂——氧修饰的钛卟啉。本文的结构安排是:第一章介绍了水分子分解的研究背景及现状、卟啉分子的吸光特性,以及本文的思路和研究过程。第二章介绍了第一性原理的发展过程以及密度泛函理论。第三章研究了水分子在碱土金属卟啉和过渡金属卟啉上的分解情况,进而研究了钛卟啉和氧修饰的钛卟啉对水分解的催化情况,并得出影响水分解的分离能大小的因素。第四章是对研究工作的总结,氧修饰的钛卟啉是催化水分解的高效清洁可循环的催化剂。