探究石墨烯官能团对环氧树脂及复合材料抗辐射性的影响

来源 :天津工业大学 | 被引量 : 0次 | 上传用户:judas8023
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年来,航空航天业、核工业、电子通讯行业和医疗行业等众多领域都得到了快速发展,但它们的运行环境都存在X、γ射线等高能粒子。因此,对抗高能辐照的材料研究就显得非常迫切。学者们通过将纳米材料填充到聚合物基体中,来改善环氧树脂(EP)复合材料的抗辐照性。无机碳纳米材料具有清除高能射线辐照聚合物复合材料产生的自由基的作用,但环氧树脂基体在受到辐照后产生的自由基情况以及无机碳纳米材料发挥抗辐照的机理,目前并没有比较清楚的解释。因此,基于氧化石墨烯(GO)具有比较优异自由基清除的功能,本文探究了氧化石墨烯的官能团对环氧树脂基复合材料抗辐射性能的影响。本课题利用改性Hummer’s法将石墨氧化制备氧化石墨烯,并对GO进行还原。通过傅立叶变换红外吸收光谱仪(FTIR)、X射线衍射仪(XRD)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等对所制备的GO和还原氧化石墨烯(RGO)进行表征。利用树脂传递模塑成型工艺制备GO/EP、RGO/EP复合材料,探究了不同质量分数的GO对环氧树脂的抗辐照性的影响,确定最佳的质量分数掺入比。并以此为基础,研究两种不同还原程度的RGO填充环氧树脂的抗辐照性。借助FTIR、XPS、热重、动态热机械和万能强力机等常规宏观测试手段以及电子顺磁波谱仪、纳米压痕等微观测试手段,对所制备GO/EP和RGO/EP的γ射线辐照前后的微观结构、热稳定性、热机械性、自由基含量和微观硬度进行表征。结果表明:针对不同质量分数GO对环氧树脂的抗辐照性,掺入量为0.3%时效果最佳,具体表现为自由基浓度下降较多。复合材料γ辐照后的硬度、压痕深度和玻璃化转变温度下降比分别为16.00%、416.3 nm和20.32%,而对应的EP分别为41.82%、502.1 nm和30.34%。RGO/EP复合材料γ辐照后的硬度下降比为19.55%,压痕深度增加到464.7 nm。相比于纯环氧树脂来说,RGO/EP复合材料的抗辐照性有较大的提升。对比GO官能团的影响,抗辐照的能力相较于未还原的略有下降。可见,GO的结构上具有多种含氧官能团,可以与EP的官能团形成很好的结合力,具有良好的抵抗γ射线辐照作用。
其他文献
由于中空纤维膜具有独特的中空结构和自支撑性被广泛应用在膜分离和污水处理领域。中空纤维膜的装填密度和排列方式等对膜的应用影响显著。缠绕或者编织型中空纤维膜组件,可使流体在膜表面流动不稳定,进而减缓膜被污染的过程。对于编织型中空纤维膜,通常要求膜材料有较好的柔韧性和强度。超高分子量聚乙烯(UHMWPE)是一种高强度、高模量的工程材料,是获得可织造中空纤维膜的良好材料。本研究以白油作为稀释剂,使用热致相
学位
随着女性对胸部的健康和形态美越来越重视,文胸成为必备的服装单品。文胸衬垫作为女性文胸的重要组成部分,决定着文胸产品的舒适性与功能性的优劣。衬垫的种类可分为一般棉质胸垫、硅胶胸垫、乳贴、充气衬垫、超厚衬垫等;文胸衬垫材料有聚氨酯泡沫、乳胶、织物层合布、无纺布和间隔织物等。海绵是目前内衣市场上使用最多的材料,但其对人体有慢性伤害,海绵也称聚氨酯泡沫,是石油和沥青的化合物,其制加工流程复杂且不够环保,聚
学位
传统太阳能光热材料由于成本高、易受损、大规模制造难度比较大,并且还存在安全风险,所以很难满足在建筑上的大面积使用。本课题受北极熊毛皮结构的启发,制备出一种成本较低、环保、阻燃的太阳能光热复合材料。利用经编间隔织物和环氧树脂制备透光隔热层,采用黑色非织布作为吸热层,制备出基于纺织品的太阳能光热复合材料。实验首先引入反光材料,增强间隔织物(即透光隔热层)的光透过率。然后通过聚乙烯醇(PVA)将荧光材料
学位
纺织服装领域正在跨越传统,从传统基本功能向更智能化转型。智能纺织需要交叉学科、多领域的知识共同研究。其中智能化的基础——能源的来源,在不可再生资源日益缺乏的今天尤为重要,亟需使用清洁能源。染料敏化太阳能电池(DSSCs)作为第三代太阳能电池,因其成本低、制作简单、可调节的颜色特征等优势,成为替代传统硬质单晶硅太阳能电池的选择之一。本论文以染料敏化太阳能电池纺织品的设计研究作为研究方向,从光阳极材料
学位
新冠疫情的爆发,使得纺熔非织造产业得到了快速发展,但随着疫情防控的逐渐稳定,需求量的减少使得大量的纺熔设备停产,产业发展陷入困境。目前,主流的纺熔非织造产品多以聚丙烯和聚酯等为原料,虽然强度足够,但都不具备弹性。热塑性聚氨酯弹性体最早便是用来制备弹性非织造材料,但因为加工难度较大,该项研究一直处于实验阶段。为推进热塑性聚氨酯纺熔非织造材料产学研一体化进程,扩宽产品应用领域,本课题以热塑性聚氨酯为主
学位
在柔性防护领域,非牛顿流体具备巨大的应用潜力,国内外普遍将其与高性能织物结合,发挥其储能模量高、应变率敏感的特性。相比于剪切增稠液(STF),剪切硬化凝胶(SSG)克服了颗粒沉降、流体易挥发、不易储存等缺陷,更易于与纺织材料相结合。因此,本课题首先探索了SSG的合成工艺,并与折纸结构的Kevlar织物复合形成特殊点阵排列,最终通过发泡封装,形成一类兼具负泊松比效果及优异抗冲击性能的柔性缓冲复合材料
学位
近年来,大气中的温室气体量屡次创下新纪录,年增长率高于2011-2020年平均水平,并且未来几年这一趋势仍将继续。全球气温升高,直接导致冬季出现更多极端的寒潮天气。面对这种情形,能提供低温防护的电加热服装因其清洁环保、热效率高、温度可调等优点得到了诸多关注。其中镀银纱线(Siver-plated yarn,SPY)因具有良好的导电性、柔韧性、抗菌性等被广泛应用于电加热服装服饰中。本文以SPY为导电
学位
气凝胶材料具有低密度、高孔隙、高比表面积、孔结构可调控等特点,在众多领域展现出广阔的应用前景,在研究人员的努力下,近年来开发了众多功能不一的有机、无机气凝胶,但是目前气凝胶仍存在力学性能弱、用途较为单一的问题。芳纶纳米纤维兼具芳纶的优异性能和高长径比的尺寸优势,是构建柔弹性、功能化气凝胶的理想基元,为增强芳纶纳米纤维气凝胶力学性能、拓展其功能应用,本论文着力于结构的设计调控展开了三个方面的工作:(
学位
抗菌性能和吸水性能均优异的医用敷料研究较少,部分抗菌敷料存在抗菌物质对人体有害或者吸水性能不理想导致伤口粘连等弊端。艾草具有广谱抗菌、绿色环保、安全无毒等优点,将艾草提取物与纺织品相结合可使其具有天然抗菌性。羧甲基亲水性极强,羧甲基化改性的材料具有高吸水性能,且吸液后还可形成凝胶结构,有利于减缓液体的散失,为创面提供愈合的湿润条件。因此将艾草提取物与非织造材料结合并对其进行羧甲基化改性,使其拥有优
学位
后疫情时代,PP熔喷行业产能趋于饱和,新材料、新结构的探索迫在眉睫。以微相容共混体系为研究对象,基于熔喷纤维成形过程中“拔河效应”制备多尺度纳微结构的非织造材料是一大发展方向。聚对苯二甲酸丁二醇酯(PBT)是一种在血液过滤、油水分离领域有较为广阔应用的熔喷新材料,本课题以PBT与PP切片为原料,通过组分含量及工艺参数调整,实现了纳微结构可控调节,研究了“部分相容”组分形成多尺度纳微纤维结构的调控机
学位