论文部分内容阅读
单细胞微藻类因其具有较高的光合效率、较快的生长速度和较高的生产率等优势,正逐渐成为新一代生物燃料。然而,微藻的收集问题一直是困扰藻类制生物燃料应用发展中的瓶颈。有研究表明,细菌可以协同微藻进行污废水控制,并借助其良好的絮凝性能高效、经济地聚集微藻。但是这种菌藻共生关系对微藻聚集的影响机理和作用机制尚不明晰,相关研究有限。本文以单细胞具有运动能力的小球衣藻(Chlamydomonas microsphaera)为研究对象,研究微藻对污泥细菌的响应行为在聚集过程的作用,揭示菌藻聚集体形成机制,以期为探索高效、低成本的微藻收集方式提供理论依据支持。本文通过构建微型微藻反应器系统,分别研究了污泥细菌、活性污泥胞外聚合物(Extracellular polymeric substance,EPS)和污泥细菌信号分子对微藻自聚集行为的影响,主要结论如下:第一,污泥细菌的出现能显著促进了小球衣藻的聚集。纯培养小球衣藻的聚集率仅为约12.94%,混合培养时其聚集率随着污泥细菌数量的增加而上升,在藻菌比为1:10时,聚集率可达62.92%。对微藻运动速度的分析发现,在加入污泥细菌后其速度从初始时刻的22.08μm/s迅速上升至48.81μm/s,导致细胞间碰撞概率加大,有助于细胞聚集。同时,菌藻聚集体的EPS分泌量相比纯培养微藻上升约163.38 mg/L。进一步分析发现,污泥细菌的出现改变了体系Zeta电位,从初始-25.00 mV增长至-14.60 mV,说明细胞间斥力减小并趋向于聚集。对污泥细菌的种群变化的分析显示,铜绿假单胞菌Pseudomona和根瘤菌Rhizobium在促进小球衣藻聚集方面发挥着重要的作用。第二,为了区分污泥细菌和EPS对微藻聚集的影响程度,研究了外源性污泥EPS对微藻自聚集行为的影响。结果表明:随着外源性污泥EPS浓度的增加,小球衣藻聚集率显著增大,在110 mg/L EPS时达到最大值81.82%。微藻细胞运动速度也从初始时刻的26.82μm/s上升到49.36μm/s,促进了微藻聚集。然而,体系Zeta电位变化则与微藻的聚集率呈负相关关系,并非微藻聚集原因。同时发现,外源性EPS水平与微藻细胞外色氨酸类蛋白和芳香族类蛋白分泌量正相关。第三,为了验证污泥EPS溶液中可能包含的细菌群体感应信号分子(正酰基高丝氨酸内酯,AHLs)是否影响小球衣藻,在藻液中加入好氧絮体、好氧颗粒、厌氧絮体、厌氧颗粒四种污泥细菌AHLs。发现四种活性污泥细菌AHLs一定程度上有助于小球衣藻的聚集,其中颗粒污泥AHLs对微藻聚集效果最好,聚集率最高可达43.44%;而好氧絮体污泥细菌AHLs对微藻聚集效果较差,仅约19.90%。添加AHLs后,色氨酸和芳香族蛋白分泌量增大,其与微藻聚集率呈正相关;而藻细胞运动速度降低至24.88~30.83μm/s,Zeta电位较对照组上升约7.44%,AHLs对二者影响较小。