基于光诱导同质结非晶ZnSnO3紫外光电传感器的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:zsdxzj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
紫外(UV)探测技术几乎不受环境背景噪声影响,在生物分析、发射器校准、空间探测等方面得到了广泛应用,而紫外光电传感器是其核心。当今,紫外光电传感器多基于单原子硅、Ⅲ族氮化物和金属氧化物材料。硅和Ⅲ族氮化物成本高、制备工艺复杂,发展受到限制。宽带隙金属氧化物半导体材料,如ZnO、SnO2等二元氧化物和Zn Ga2O4、ZnSnO3等三元氧化物,对紫外光也具有良好的UV光敏性能;且其物化性质稳定、制备成本低、可见光区透光率高,因此成为紫外光电检测器领域的研究热点。三元氧化物结构稳定,可通过改变其组成灵活地调节氧化物的功能而受到广泛关注。UV光敏材料ZnSnO3兼具ZnO和SnO2的优点,应用前景广阔,但其光电性能易受制备工艺的影响。本课题以Na OH为沉淀剂、HTMA为有机功能添加剂,分别用共沉淀法和水热法合成了高纯度的Zn Sn(OH)6颗粒。SAEM和TEM分析表明,所合成的Zn Sn(OH)6前驱体为多晶立方体,高温处理后其所对应的ZnSnO3半导体材料为非晶结构。实验对比表明,由水热法途径所获得ZnSnO3的光电性能比共沉淀法的好,因此本研究针对前者所获得ZnSnO3的光电性能进行了重点研究。此外,ZnSnO3的性能可通过其Zn Sn(OH)6前驱体灵活控制,这一点通过Mg2+离子掺杂Zn Sn(OH)6得到证实,基于水热法得到的Mg掺杂物光电性能得到显著提高:Zn0.9Mg0.1SnO3光电传感器的光暗电流比为10715(偏压3.3 V,UV:2.46 m W/cm~2),响应及恢复速度分别为4 s和9 s,显示出良好的线性度和稳定性。对此进行机理研究认为,基于氧空位的差异性,在ZnSnO3中形成光诱导同质结,抑制光生电子和空穴的复合是其具有良好光电性能的原因。紫外光电传感器用于成像时,需要构成阵列,并提供适配的读出电路。本研究在光电性能测试的基础上,建立了Zn0.9Mg0.1SnO3紫外光电传感器的2×2阵列模型,为其设计了包括电容反馈跨阻放大器(CTIA)型读出、相关双采样的CMOS读出电路。基于0.25μm 1-poly 5-metal工艺进行仿真,阵列完整读出所需时间为80μs,电路能准确转换10 n A–16μA的光电流,运放功耗815.5μW。仿真结果表明,设计的读出电路能够快速完成2×2传感器阵列电信号的读出,且功耗较低。
其他文献
命名实体识别(NER)是自然语言处理中关系提取、实体链接、机器翻译等任务的重要基础。近年来,随着各行各业产生的大量数据,对命名实体识别技术的准确性和适用性提出了新的要求。传统的命名实体识别方法需要花费大量的时间对特征进行手工设计,特征工程的质量直接影响模型的最后性能。近年来,研究利用深度学习模型代替人员人工构建特征,并在一些公开数据集上达到了比较好的性能。论文的主要工作如下:1.针对英文命名实体识
《普通高中语文课程标准(2017年版)》中,明确界定了整本书阅读教学学习目标:在阅读过程中,探索阅读整本书的路径,形成和积累自己阅读整本书的经验。重视学习前人的阅读经验,根据不同的阅读目的,综合运用精读、略读与浏览的方法阅读整本书,读懂文本,把握文本丰富的内涵和精髓。可见,整本书阅读教学,需要让学生在阅读过程中,掌握一定的阅读策略,并学会灵活运用。
期刊
气体检测传感器是仪器科学领域中最活跃的技术之一,在医学、生物以及国防等众多场合都发挥着关键作用。随着新型气体传感器登上实时快速检测的舞台,快速识别复杂气体、高灵敏度、小型化等目标也对气体传感器性能提出了诸多挑战。得益于微机电加工技术(MEMS)的迅猛发展,电容式微超声传感器(CMUT)已经从其传统的超声技术领域转向更多的传感应用,如气体传感、湿度传感等,这都与其谐振频率受许多物理量影响分不开,而与
近年来人脸识别技术在安防、金融、娱乐等行业得到了广泛应用。深度学习算法是人脸识别技术实现的关键,然而深度学习人脸识别技术在嵌入式设备应用中仍存在许多问题,一方面,由于大规模人脸训练集存在大量冗余特征,网络模型训练前向传播速度不高,另一方面,由于提取人脸特征的网络模型结构复杂,算法嵌入式运行速度不高,该技术未能得到普及。针对上述问题本文面向自动驾驶应用场景,研究了嵌入式深度学习人脸识别算法,搭建了嵌
随着饮食水平的提高,各类肠道疾病的发病率也不断增加,结肠息肉和憩室是结肠镜检查中常见的疾病,严重时会引发肿瘤甚至癌变。目标检测在图像识别和分类任务中占有着重要的地位,是计算机视觉领域中一项非常重要的研究课题,近几年在医学领域的应用也越来越深入。本文提出了一种基于深度学习的计算机辅助诊断系统(Computer Aided Diagnosis,CAD)用于结肠息肉、憩室等常见病变检测,以降低患有结直肠
二氧化氮是一种有毒气体,其主要来自于汽车尾气排放、重工业等。大量二氧化氮存在于空气中,在污染大气的同时导致酸雨、光化学烟雾等环境污染现象。近年来,作为重要大气污染源的二氧化氮的准确可靠检测日益引起人们的重视,从而产生了对高性能气敏传感器的迫切需求。发展高性能气敏传感器,必须提升气敏传感器的各项性能参数,包括灵敏度、选择性、稳定性、工作温度、响应/恢复时间等。本论文针对气体传感器目前的研究与发展趋势
近年来,随着深度学习和人工智能的不断发展,人脸检测和人脸识别已经被广泛应用于医疗应用、人机交互系统、机场检查等领域。目前,如何提升人脸检测和人脸识别的精度是近年来关注的热点。本论文针对提升人脸检测和人脸识别的精度,主要内容包括:1、实现了MTCNN人脸检测模型,并对MTCNN模型进行了改进。将深度可分离卷积引入MTCNN网络,将其替代传统卷积,减少卷积运算量;调整三个卷积神经网络结构的感受野,使得
人脸补全是计算机视觉和图像处理领域中的一个重要话题。它的核心任务在于还原图像信息,使生成的补全结果与真值结果尽可能保持一致。由于现有的人脸补全方法没有对补全结果与真值结果的一致性进行强有力的约束,且忽视了人脸图像的对称性特征,从而导致无法对人脸的任意部位,尤其是对称部位,生成真实自然且与真值结果一致的补全结果。除此之外,高分辨率人脸图像已经成为主体,但是现有方法大多都无法适用于高分辨率人脸图像补全
近年来中国道路交通发展迅速,交通状况愈发复杂,基于目标检测的自动驾驶技术逐渐成为研究的重点。交通标志检测作为自动驾驶领域最重要的组成部分之一,受到了社会各界的广泛关注,其中基于卷积神经网络的目标检测算法被认为是解决交通标志检测问题最有效的办法之一。交通标志对检测精度及检测速度方面均有较高的要求,以Tiny-YOLOv3为代表的轻型网络虽然满足对检测速度的要求但检测精度普遍较低;以YOLOv3为代表
气液固三相流广泛存在于自然界和工业生产过程中,对其各相分布测量具有重要意义。当前传统的流体检测方法难以针对气液固三相流的各相分布进行无损、非侵入式的在线检测。电学层析成像技术(Electrical Tomography,ET)是一种非侵入式、结构简单、成本低廉、无核素辐射的新型无损检测方法,在多相流检测领域具有广阔的应用前景。单模态的电学层析成像方法多是针对两相流的分相识别检测,当流体多于两相时,