TC4钛合金/304不锈钢薄板钨极氩弧焊接头组织及性能研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:chubiao5201314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛合金/不锈钢复合结构具有钛合金比强度高、耐蚀性好和不锈钢价格低廉等优点,能够充分满足现代制造业结构减重和功能多样化要求的同时兼顾经济性,在航空航天、能源化工、发动机以及生物医学等领域具有重要的应用价值。目前钛/钢异种金属熔化焊研究主要集中于激光焊和电子束焊等高能束焊接领域。然而高能束焊接技术及设备复杂、生产成本高,更适用于高附加值的特定对象的小批量生产。相比之下,钨极氩弧焊接头焊接质量高、操作简便、生产成本低,能灵活适应不同的焊接位置和焊接工况,是目前生产制造过程中应用最为广泛的熔化焊技术之一。因此研究开发钛合金与不锈钢的高质量钨极氩弧焊工艺,有利于促进钛/钢异种金属复合结构的推广和应用。然而钛合金与不锈钢物理化学性质差异大,接头中易生成脆性金属间化合物,焊接残余应力高,焊缝易开裂。本文采用1 mm厚TC4钛合金与304不锈钢薄板为主要研究对象,重点探究接头连接模式随焊接工艺的演变规律、焊丝合金元素对界面金属间化合物种类和形态分布的影响机制、接头残余应力的分布特点等关键问题,其研究结果对于不同厚度的钛合金与钢熔化焊连接均具有重要的理论价值和指导意义。本文的主要研究内容及结论如下:(1)首先研究了焊接电流对TC4钛合金/304不锈钢熔化焊接头成形、界面区微观组织及接头力学性能的影响。试验表明,焊缝中大量生成的TiFe2脆性相导致无填丝TC4钛合金/304不锈钢熔化焊接头难以成形,焊后即开裂。采用纯铜焊丝能够有效抑制焊缝中生成TiFe和TiFe2脆性相,避免接头焊后开裂。随焊接电流增加,TC4钛合金/304不锈钢接头连接模式由小电流焊接工艺下的钎焊模式逐渐转变成部分熔焊和完全熔焊模式。在小电流钎焊模式下,接头中TiFe2脆性相被完全抑制,钛/铜界面生成脆性较低的Ti2Cu、TiCu、AlCu2Ti、TiCu4和Ti2Cu3等金属间化合物,接头抗拉强度达到261 MPa。焊接电流升高时,α-(Fe,Cr)固溶体与铜固溶体在铜/钢界面区犬牙交错产生机械互锁效应,接头抗拉强度达到363 MPa。焊接电流增加至60A以上,TiFe2脆性相在铜/钢界面大量生成并呈网状分布,降低了接头抗拉强度。(2)熔合界面区中脆性金属间化合物的生成和控制是影响TC4钛合金/304不锈钢异种金属熔化焊接头力学性能的关键因素。因此,调控金属间化合物的种类,降低接头界面区金属间化合物脆性,就成了改善接头组织及性能的重要途径。本文采用铜合金焊丝焊接钛合金与不锈钢,揭示了铜基焊丝中Si、Al、Ni合金元素对界面区金属间化合物生成和接头力学性能的影响规律。小电流焊接工艺下,Si元素在钛/铜界面区边缘形成带状Ti5Si3相,阻碍了钛/铜界面区和焊缝之间的元素扩散,减少了界面区中的TiCu枝晶相;焊丝中加入Al元素,钛/铜界面区生成AlCu2Ti相,界面区硬度降低。Si、Al元素促进了铜/钢界面处的原子扩散,扩散层厚度显著增加。焊接电流升高时,合金元素的影响被弱化,TiFe2脆性相在界面区中大量生成,成为制约接头抗拉强度提升的主要因素。(3)小电流焊接工艺下Ni元素能促进铜/钢界面形成固溶体,接头抗拉强度随Ni含量增加而升高。熔焊模式下,Ni元素能够细化铜/钢界面区中的TiFe2脆性相。Ni含量增加至30 wt.%时,铜/钢界面区形成富铜γ-(Fe,Ni)固溶体,抑制了 TiFe2脆性相的连续分布,接头抗拉强度达到413 MPa。(4)为进一步揭示TC4钛合金/304不锈钢熔化焊接头界面冶金反应顺序及合金元素对金属间化合物生成的影响,本文基于Miedema理论,建立了形成焓△H、吉布斯自由能G和化学势μi的预测模型。热力学计算结果表明:Si、Al、Ni元素优先与Ti发生反应,抑制了钛/铜界面区中TiFe和TiFe2脆性相的生成。Si、Al、Ni合金元素在化学势驱动下向不锈钢基体扩散,界面扩散层厚度增加。(5)除界面脆性金属间化合物之外,较高的残余应力是制约TC4钛合金/304不锈钢熔化焊接头力学性能的另一个重要因素。本文采用有限元计算方法研究了焊接电流和填充金属对TC4钛合金/304不锈钢钨极氩弧焊接头残余应力分布的影响。计算结果表明:填充纯铜焊丝后,相比无填丝焊接头,高应力区转移至焊缝两侧的热影响区,焊缝中纵向残余应力显著降低。焊接电流升高时,细小金属间化合物在焊缝中产生弥散强化,导致焊缝中纵向残余拉应力增加,焊缝横向裂纹增多。采用镍基合金焊丝时,接头中Von-Mises应力显著降低,焊缝中纵向残余应力远低于焊缝金属抗拉强度,有利于抑制焊缝中的横向裂纹。(6)根据残余应力有限元计算结果,设计了 TC4钛合金/304不锈钢熔焊用Cu+Ni复合填充层,获得了 TC4钛合金/Cu包覆层/镍基焊缝/304不锈钢异种金属复合结构,扩大了焊接工艺窗口,抑制了焊缝中的横向裂纹。Cu中间层可以降低钛合金母材的熔化量,减少钛侧界面区中的脆性金属间化合物。采用Cu+Ni复合填充层,钛侧界面区生成β-Ti、Ti2Ni、TiNi、TiNi3金属间化合物和(Cr,Mo)固溶体;焊接电流升高,钛侧界面区中形成Ti(Fe,Cr,Ni)2和Ni-Fe-Cr-Ti多元化合物。镍基合金焊缝与不锈钢之间形成FeCrNi固溶体,无脆性金属间化合物生成。所有接头均断裂于钛侧界面区,接头抗拉强度均值可达432 MPa,单个试样抗拉强度最高可达485 MPa。
其他文献
以聚醚醚酮(Polyetheretherketone,PEEK)、聚酰胺(Polyamide,PA)为代表的高性能热塑性工程塑料及其碳纤维增强复合材料具有优异的力学性能、耐热性能和耐腐蚀性能等,近年来在汽车工业、机械装备、电子电器和航空航天等领域得到广泛应用。短纤维增强和连续纤维增强是碳纤维增强复合材料的两种主要形式。短碳纤维(Shortcarbonfiber,SCF)增强复合材料易于成型加工复杂
风力发电机叶片和飞机机翼覆冰对其正常工作带来严重的干扰问题。沿面介质阻挡放电(Surface Dielectric Barrier Discharge,SDBD)作为一种新型的除冰技术,由于能耗低、响应快和良好的除冰性能近年来受到学者们的青睐。但SDBD及其除冰的等离子体过程、放电模式转变和物理效应等问题有待进一步探究。基于此,本文采用实验与模拟相结合的方式研究了脉冲SDBD及其除冰过程的等离子体
“三公”调度一直是我国主要的调度原则,其要求电量计划的制定和各发电厂商的电量执行进度均满足“三公”要求。近年来,随着新能源装机规模的不断增大、以大用户直接交易为主的“市场电”比例的逐年增加,电力系统的优化运行愈加复杂,电能交易计划作为其基础和最为重要的环节之一,亟需开展新形势下理论方法研究。然而,目前“三公”调度始终缺乏具有理论基础且被公认的公平性指标作为支撑,且已有的年度电能交易计划制定方法也较
为了实现控制本世纪末全球平均气温升高小于2℃的目标,“巴黎协定”提出了通过国家自主贡献(INDC)实现减排目标的国际框架,这需要各个国家和行业相互协同应对挑战。建筑能耗是世界第二大能源消费领域,其运行阶段所消耗的能源是影响温室气体排放、环境污染、资源消耗的重要原因,也是威胁世界可持续发展和气候变化目标的关键因素之一。住宅建筑能耗占中国建筑领域总能耗的62%,在中国城镇化快速发展趋势下,住宅建筑能耗
结构生色材料作为一种新型的显色材料,具有良好的光稳定性和亮丽的颜色,有望代替颜料和染料。胶体微球组成三维有序结构或短程有序、长程无序结构是常用的产生结构色的方法。三维有序结构具有亮丽的结构色,但存在角度依存性,严重的限制其在显示等领域的应用。短程有序、长程无序结构易于大面积制备且具有无角度依存性的结构色,但颜色暗淡、饱和度低。这主要是由于目前该结构通常是以低折射率聚合物微球或SiO2微球为结构单元
锂离子电池作为一种绿色环保的储能装置已经在便携式电子设备及电动汽车领域得到广泛应用,但是目前商业化的石墨负极理论比容量较低,限制了锂离子电池的能量密度和功率密度。金属硫化物和金属磷化物具有较高的理论比容量,并且储量丰富、价格低廉,有望代替目前的商用石墨材料成为下一代锂离子电池负极材料。金属硫化物的电子导电率较低,以及循环过程中的体积效应严重影响锂离子电池的电化学性能;金属磷化物则兼具嵌入反应和转化
由于ZrO2具有酸碱性兼备的表面、丰富的氧空位、弱亲水性等特点,可作为催化剂载体,在多相催化反应中应用广泛。通过调控ZrO2材料的结晶度、比表面积、化学组成、表面酸碱性、微纳米结构等性质,可以有效地提高材料表面活性位点数量、促进物质扩散、增强催化性能。基于这一目的,本论文综合利用多孔模板法以及微流控和静电纺丝等技术,合成了一系列ZrO2基无机复合材料,并以此为载体进一步制得性能优异的多孔复合催化剂
人体头部遭受过量外部载荷而导致的脑组织损伤被称为创伤性脑损伤(Traumatic brain injury,TBI)。TBI是一种严重危害人类健康的疾病,由于TBI的发病率日益增加,针对TBI的相关研究越来越受到人们的重视。对于TBI的深入研究不但可以探究TBI的发病机理、损伤区域等病因,还可以为TBI高发人群提供防护装备设计灵感和依据。目前的TBI研究已成为医学与力学研究的交叉领域,研究方法可分
半月板结构总体积的3%-5%被损坏,其所承受力将提高至原来的3-5倍。而伴随着半月板损伤导致的关节软骨退化症、膝关节积液等问题会逐步加剧。其中,半月板内侧三分之一的“白-白”区由半月板细胞及其细胞外基质构成,再生能力极其有限。该区域损伤尚无较好的治愈方法。本文的研究目的是构建一种新型半月板组织工程支架。具体的方法是通过猪源半月板组织脱细胞处理,获得猪源半月板组织细胞外基质(Decellulariz