论文部分内容阅读
本论文是对Lévy连续模定理进一步推广到等间距分段加权和的情形之下,得到了关于标准Wiener过程下的等间距分段加权和的Lévy连续模定理。本文共分为三章。
第一章为引言。在这一章中,简要地介绍了Wiener过程作为随机过程中重要的一类,它与其他学科的密切联系,和关于此过程一些已经取得的重要成果,以及与本论文有关的一些工作。
第二章为准备知识。在这一章中,首先,给出了本论文所要用到的一些记号和Wiener过程[t,s]上的加权线性组合的定义。其次,给出了本论文在证明结论中所要用到的一些重要的引理和命题。
第三章为定理的证明。在这一章中,我们证明了关于标准Wiener过程的等间距分段加权和的Lévy连续模定理,讨论了在第二章中定义下的Wiener过程在加权线性组合下的增量有多小。本论文的结论是对文献[3]中的重要定理1.2.1的推广和创新。
总之,Wiener过程中的增量的性质是研究Wiener过程重对数率的基础。因此本文的结论对Wiener过程的样本性质进行更深入的研究有很大帮助。