单原子催化剂在电催化还原二氧化碳中的应用及研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:bluegini2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于人类对于化石能源的大量使用,不仅导致大量的温室气体CO2的排放,而且会造成能源的短缺。另一方面,CO2是一种无毒、廉价、丰富的C1资源,可以用于各种化学品的生产。对CO2有效的转化利用既能够解决环境问题,又能够缓解能源短缺的现状。目前,CO2的资源化利用技术包括热化学还原、光化学还原、光电催化还原、电化学还原等方法。电化学还原二氧化碳(CO2RR)技术一种利用间歇可再生电力转化CO2的绿色便捷策略,它利用电化学方法,高效的将CO2转化成有价值的化学品或燃料,具有反应条件温和、使用清洁能源、催化转化效率高、可合成多种含碳化合物和能够通过控制电解条件调控目标产物等优势而受到研究者的广泛关注,成为化学和材料科学领域的重要研究对象之一,有希望解决化石能源过度消耗带来的能源危机和过度碳排放造成的温室效应。目前其问题在于产物选择性差、催化剂活性低且制备困难、价格昂贵。而这一技术的主要突破在于设计并合成一种高效率的催化剂,提高转化效率与产物选择性,实现催化剂性能对于工业化的要求,将对环境与能源方面产生革命性的意义。
  MOF材料的碳骨架不仅结构稳定,孔隙率高,而且MOF本身的N元素依旧能保留在碳骨架中。杂原子N元素作为电催化领域有很大影响力的元素,能有效的改变材料的电子状态提高电子密度,降低反应活化能,促进催化反应的发生,提高催化剂活性和优化反应过程,本文采用ZIF-8掺杂过度金属Cu、Ni元素作为催化剂前驱体,制备了一系列不同过度金属掺杂的单原子或纳米催化材料;通过高温碳化过程生成单原子催化剂,并进行了催化剂性能的测试跟结构的分析。
其他文献
电励磁双凸极电机是一种以定子集中电励磁、定转子双边凸极为特征的磁阻电机,具有结构简单、可靠性高、适应高速运行和成本低等优点,在航空起动发电系统和新能源汽车电驱动领域具有独特的优势。然而,电励磁双凸极电机相电感非线性强、谐波含量大,传统的标准方波电流控制方法难以充分发挥其转矩输出能力,存在起动转矩小、转矩脉动大、转速范围窄等问题。尽管方波换相角度的优化控制可以改善电励磁双凸极电机的转矩性能,但是由于
随着光电子技术的快速发展,半导体激光器在航空航天、材料加工、军事、医疗等领域具有广泛的应用。而窄线宽半导体激光器以其窄线宽、低噪声、高稳定性、高相干性和良好的动态单模特性,成为远距离空间光通信、高灵敏度光学传感以及能源探测等领域的核心光源器件。这些领域对激光光源的线宽、相位噪声和频率噪声都具有极为严苛的要求,因此本文针对窄线宽半导体激光器的线宽和相频噪声特性进行了实验研究。并提出了一种基于β算法计
随着移动通信的蓬勃发展,第五代移动通信(the 5th Generation Mobile Communication, 5G)将会有更高的传输速率、更密集的连接设备数以及更低的传输时延,应用场景会更加丰富多样。为满足5G对多样化的应用场景的需求,学术界和工业界纷纷研究并采用更加先进的技术手段来进一步提高系统容量和频谱效率,其中,波形调制和多址接入技术均是物理层的关键技术。一方面,OFDM技术虽然
正交频分复用(OFDM)技术具有均衡简单,抗频率选择性强,频谱效率高等众多优点,是当今无线通信的主流技术之一。而在实际通信中,接收端不经常能知道发端加给信号的预知信息,因此,对非合作通信系统的研究很有意义。  本文以DVB-T通信系统为例,完成对非合作DVB-T系统的接收端需要实现的采样钟同步,定时误差同步及载波同步三个技术点,在保证接收端未用到发端任何已知参数的前提下,完成对DVB-T系统进行正
癫痫是最常见的脑部疾病之一。在临床脑电图检查中,识别脑电图中是否出现癫痫样放电尤为重要。通常由专家人工阅读分析被怀疑患有癫痫或癫痫患者的脑电图记录,从中识别出不规则的、与癫痫相关的瞬态特征波形。这些短暂的瞬态波形又被称为癫痫样放电,它们持续几十到几百毫秒,通常分为7种类型。由于临床使用的头皮脑电图包含大量的噪声,导致癫痫样放电的自动检测成为了一个困难的任务。  为了解决这一问题,本文分析了640组
双层堤基是江河上的堤坝工程常见的地层形式,即上面为弱透水性的黏性土覆盖层,下面为强透水性的砂层。双层堤基汛期受承压水的顶托,常在堤后出现流土和管涌等险情。其中,管涌破坏是绝大多数此类堤基发生渗透破坏的形式,主要表现为堤后弱透水覆盖层薄弱处,在高水头差作用下发生破坏先形成管涌出口,后发展成向上游扩展的集中渗流通道。管涌破坏的内部侵蚀机制急需理解,多年来针对集中渗流通道发展变化的研究已取得一定的成果,
学位
鉴于国内越来越多的盾构隧道下穿机场的发展现状,机场交通与城市地铁相结合的新型换乘方式,逐渐成为了我国轨道交通的发展趋势。本文在依托成都轨道交通10号线二期工程的基础上,通过资料调研、理论分析以及数值模拟等综合研究手段,采用时域和频域分析方法,研究了盾构隧道下穿机场道面工程中,飞机荷载对机场道面、地层、隧道结构的动态响应,最后运用敏感性分析法综合分析各因素对隧道应力的影响。本文的主要研究内容如下: 
学位
近几十年来,随着全球人口基数的增多和工业的迅速发展,对能源的需求量越来越大,化石能源的大量开采和低效利用使能源短缺问题越来越严重并引发了一系列的环境污染问题。二氧化碳是引起温室效应的主要气体,降低空气中二氧化碳的浓度是减缓温室效应的有效途径也是当代学术界研究的热点和挑战。基于以上问题,本文以芹菜茎作为碳源,采用不同致孔剂,制备了一系列可以有效吸附CO2气体且在298K,1bar下对CO2/C2H2
随着全球经济的快速发展,有限的煤炭、石油等化石能源已经成为了制约社会可持续发展的主要因素之一。氢气作为一种高效的清洁能源,将在21世纪的能源舞台上扮演重要角色。目前工业上制氢主要通过高温重整反应将甲烷转化成一氧化碳和氢气。甲烷是天然气及页岩气的主要成分,储量丰富。通过甲烷重整制氢可实现甲烷的高值转化利用。由于大气中排放的CO2越来越多,并带来了一系列环境问题,通过CO2甲烷化以及甲烷CO2重整可以
能源短缺和环境污染两大问题已经严重制约了人类社会的发展,半导体光催化技术可利用太阳能分解水产氢和产氧以及降解有机污染物,是一种潜在的太阳能转化技术。其中,设计并合成高效的可见光产氢产氧材料成为光催化领域研究的重点内容。在众多半导体材料中,单斜相BiVO4是可见光催化产氧明星半导体材料,因具有合适的价带结构、良好的化学稳定性等优点,在光催化领域受到了广泛的关注。然而,BiVO4由于自身光生电子和空穴