纳米多孔镍基多元合金的设计及其电解水产氢机理研究

来源 :天津工业大学 | 被引量 : 0次 | 上传用户:zj280078064
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氢能具有热值高、无污染等优点,是一种非常有前景的清洁能源。电解水制氢具有制氢纯度高、产物无污染、原料广泛易得、制备工艺简单等优点,在低碳制氢方面有着极大的优势。电解水包括析氢(Hydrogen Evolution Reaction,HER)和析氧(Oxygen Evolution Reaction,OER)两个反应过程,每个过程均需要额外的能量,使得其分解电压远高于理论值,造成巨大的能量消耗。开发高效催化剂以加快反应动力学是降低电解水能耗的必由之路。本文采用合金-脱合金化法设计、制备了一系列一体化纳米多孔Ni基多元合金催化剂,通过调控合金成分和结构优化其性能,并揭示其催化机理。具体内容如下:(1)系统研究了Co、Mo掺杂对NiFeMn合金结构和性能的影响。Mo掺杂使合金发生调幅分解,形成贫钼区和富钼区相交织的类异质结结构。脱合金后,富钼区结构稳定不变,而贫钼区则形成纳米孔;而Co掺杂会形成单相合金,脱合金后形成均匀的纳米多孔结构。结果表明,具有两相区的纳米多孔NiFeMoMn合金电极的催化活性明显高于单相纳米多孔NiCoFeMn合金电极,且由于富溶质区的存在增强了材料的结构稳定性,避免在大电流密度下长期工作后孔结构坍塌。(2)利用调幅分解造成的两相稳定结构,进一步设计了纳米多孔NiCoFeMoMn高熵合金电极用于电解水。纳米多孔高熵合金电极呈现多级孔通道结构,暴露出更多的活性位点参与反应,并有利于电解液的进入和气体的快速释放。1000 m A cm-2电流密度下,HER反应的过电势仅为150 m V;在全电解水中,只需1.47 V的槽电压,就能达到10 m A cm-2的稳定电流密度,并且连续稳定工作超过375 h。(3)为进一步提高催化活性,本文系统研究了贵金属Ir微量掺杂对纳米多孔高熵合金结构及OER性能的影响。Ir元素的掺杂量会改变合金中的析出相数量,同时改变电极的晶面间距。纳米多孔Ir0.5NiCoFeMoMn高熵合金电极拥有最佳的OER性能。在10 m A cm-2的电流密度下,过电势仅为218m V,并且在100 m A cm-2的电流密度下可以稳定循环300 h。(4)采用第一性原理计算揭示纳米多孔Ni基合金的催化本质。结果表明,Mn、Fe、Mo掺杂会使Ni基多元合金表面原子的d带中心降低,从而使H与活性位点结合强度减弱。同时元素掺杂调节了电子结构,优化了对氢中间体的吸附,提供了最佳的氢吸附位点。而合金中元素偏析区和未偏析区之间的协同效应,进一步增强了催化剂的活性。
其他文献
为了实现利用植物黄酮制备具有保健和环境净化功能纺织品的目标,本课题分别使用黑果枸杞、蓝莓、银杏叶和葡萄籽作为原料,主要通过乙醇/水提取法等获得了多种含有黄酮类化合物的植物提取液。在对其中黄酮类化合物的化学结构和含量进行多项表征的基础上,通过传统浸染工艺使用植物提取液对羊毛和蚕丝纤维织物进行染色加工,成功制备了多种不同颜色的植物染色羊毛和蚕丝纤维织物,重点考察了染浴中的提取液添加量、染色温度和体系p
学位
智能可穿戴压阻压力式传感器可用于监测人体活动,其监测量程为超低压至中压,是对监测精度要求很高的设备,应用于保健、康复、运动等多个领域。不少研究人员都致力于开发成本效益高、环保、灵敏度高、性能稳定及制备方法简单的压力传感器。导电聚合物——聚吡咯(PPy)可以作为开发无毒、环保的压阻压力式传感器的材料。但是聚吡咯具有溶解度低和导电率低的缺陷,可在原位聚合法制备过程中对其进行改性。尽管这一过程为提升PP
学位
有机和无机全固态热电转换是智能可穿戴产品自供电方案的关键技术之一,但是无机热电材料的刚性限制了其作为热电系统在智能可穿戴领域的实际应用。为了实现热电系统的可穿戴性,以非织布为基底,与柔性、轻质的有机热电聚合物复合构建出柔性热电织物。本文首先采用聚(3,4乙烯二氧噻吩)(PEDOT)低温界面聚合技术,在非织布纤维表面构建出具有皮芯结构的热电织物。为了进一步提升热电转换效率,再依序复合聚吡咯(PPy)
学位
天线罩位于航天飞行器的头部,是集防热、透波和承力等多功能于一体的关键部件。随着航天飞行器不断向高超音速、超长航时等方向发展,严酷的服役环境对天线罩材料的耐高温性能提出更高要求,即要具有优异的耐高温烧蚀性能和较低的热导率,以保护罩体内部器件安全。石英纤维针刺预制体因具有优异的层间性能、轻质高强度、耐高温及透波性能,成为新一代天线罩研制的理想材料,近年来得到了迅速发展和广泛应用。为实现复杂结构针刺预制
学位
单向导湿纺织品是一种具有定向传输功能的舒适性织物。尽管现有研究在提升累积单向传递指数方面已取得了较好成绩,但织物依然存在透气透湿性差、耐磨性不佳等不足;此外,研究仅集中在润湿特性对液体定向传输的分析及优化,而对多孔材料孔道结构与单向导湿性能之间的关系鲜有报道。针对以上问题,本文提出了透气透湿、耐磨灵活及单向导湿兼容的材料制备要求。通过静电纺丝、针刺热压及功能化改性多重技术相结合对多孔复合膜结构及润
学位
由于社会的不断发展,对能源的需求日益增加,优化能源利用是解决能源问题的一个重要手段,而储能技术在优化能源利用的作用引起了人们广泛的关注。锂离子电池在储能领域已经广泛使用,但目前锂离子电池电极材料的能量密度已经接近理论极限,很难满足日益增长的能源需求,而且锂离子电池正极材料为重金属化合物组成,价格昂贵且易对环境造成污染。因此,亟需寻找合适的替代材料。单质硫资源丰富、无毒无污染,以单质硫作为正极的锂硫
学位
采用CO2激光器通过同步送粉方式在低碳钢基体上熔覆铁基合金粉末,在不同激光功率下制备了成形良好的熔覆层。采用光学显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)及显微硬度计等,对激光熔覆层的微观组织和性能进行观察、测试与分析。结果表明:熔覆层中通过原位反应形成了大量细小且弥散分布的MoC、Cr2Ni3、Fe2B、TiC等增强相,熔覆层的平均硬度可达1000HV以上。随着激光功率的增大,MoC增强
期刊
针对液压油缸内壁表面强化问题,利用激光熔覆技术和电弧熔覆技术分别制备了液压油缸内壁激光熔覆层和内壁熔铜层。结果表明:激光熔覆层主要由奥氏体相组成;而内壁熔铜层主要由α-Cu基体、球状γ相以及枝晶态κ相组成,且出现了元素偏析现象;其次,激光熔覆层的硬度显著高于内壁熔覆层;耐蚀性分析表明,相比内壁熔铜层,激光熔覆层具有更为优异的耐蚀性,尤其盐雾腐蚀下性能差异明显,在于内壁熔铜层出现了疏松的Cu2O和C
期刊
激光熔覆技术是一种发展前景广阔的新型表面改性技术,既满足了材料表面特定性能的要求,又节约了大量的贵重元素。裂纹问题是制约激光熔覆技术广泛工业化应用与进一步发展的主要阻碍之一。介绍了激光熔覆层裂纹产生的原因,综述了裂纹的控制措施,包括熔覆层材料成分设计、设置过渡层、工艺参数优化、基体预热、外场(力)辅助等,最后对当前激光熔覆层裂纹控制措施中仍存在的问题进行了总结,并展望了未来的研究方向。
期刊
具有光致变色和热储能调温的多功能相变材料已受到广泛关注,在可穿戴户外温度调节服装、柔性可穿戴紫外线防护服、建筑材料、智能防伪、可逆光学数据存储系统、多用途光响应传感系统等领域具有广阔的应用前景。本论文首先选用固-固相变材料,即梳状聚丙烯酸烷基酯作为光致变色化合物螺吡喃(SP)的聚合物基体材料,采用细乳液聚合法,将SP溶于不同烷基侧链长度丙烯酸烷基酯中,分别以十二烷基硫酸钠、十六醇和过氧化二苯甲酰分
学位