过渡金属单原子催化剂的制备及其产氢和污染物降解性能研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:ha1cy0n
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单原子催化剂因缺少金属-金属键、存在不饱和配位的独特电子结构和具有明确的配位环境等特点,表现出100%理论原子效率、高催化性能和高选择性催化过程等优点,被广泛应用于能源转化和污染治理等方面。但单原子催化剂面临着金属负载量低、单原子均一性差等关键科学问题,和存在单个原子对活性物种调控规律不明确、双原子之间的协同效应模糊等问题。为了解决上述难题,我们进行了相关研究如下:1)发明了一种配体辅助超分子自组装的合成策略。其主要机理为:凭借有机配体与金属离子之间的络合作用,调控超分子前驱体内各金属的含量;利用氢键提高熔点的作用,能够避免各金属原子在高温下团聚;通过前驱体在惰性气氛下高温裂解,使得金属原子固定在石墨相氮化碳(CN)上。该策略不仅可以普适性制备出高负载量的单原子催化剂M1/CN(M=Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag和Cd),而且能够制备出双单原子催化剂和百克级的单原子催化剂。2)利用柠檬酸螯合硝酸银辅助超分子自组装法,合成出负载量高达10.0wt%、新型均一配位构型的Ag-N2C2/CN。通过材料表征、光电性能测试以及理论计算分析,证实了CN随着C、N共配位Ag单原子的引入,不仅拓宽可见光的吸收范围、调控电子结构和降低产氢过电位,而且能够促进光生电子与空穴之间的有效分离等过程。其光催化产氢的性能优于等金属含量的PtNP/CN,并且在长达60个小时的可见光照射下,Ag-N2C2/CN具有良好的循环稳定性。3)运用草酸螯合硝酸铁辅助超分子自组装法,制备出负载量高达7.0 wt%且高均一Fe-N4构型的Fe1/CN。性能测试实验表明Fe1/CN能够高效活化PMS快速降解对氯苯酚(4-CP),其去除速率是等量FeNP/CN的5.4倍。活性物种测试和捕获剂实验均证实Fe1/CN活化过单硫酸盐(PMS)生成1O2的选择性为100%。并从Fe的尺寸和Fe原子的暴露率等方面,阐明了其与1O2生成速率之间的线性关系。利用电化学测试和密度泛函理论(DFT)计算分析,得出高均一的Fe单原子诱导PMS发生氧化100%生成1O2的机理。Fe1/CN表现出强的抗阴阳离子和天然有机质等环境介质的干扰能力、宽的p H耐受性以及良好的循环稳定性。4)使用配体共螯合辅助超分子自组装法,制备出Fe、Zn双原子负载于CN的Fe1Zn1/CN。活性实验表明Fe1Zn1/CN具有双原子位点之间的强协同作用,活化PMS产生O2·-、1O2和Fe(IV)等活性物种,对2,4-二氯苯酚(DCP)的降解速率为0.95 min-1,分别为Fe1/CN和Zn1/CN的2.8和188.6倍。此外,Fe1Zn1/CN对DCP具有良好的矿化效果,其矿化率可达70%。另外,Fe1Zn1/CN还具有强的抗阴阳离子和天然有机质的干扰能力,宽的p H耐受性以及良好的循环稳定性。
其他文献
二维过渡金属硫化物材料(MS2)是一类具有单/多原子厚度的片层状材料,其优异的物理、化学、光学、电子、机械等性能,引起了科学领域的广泛关注。MoS2和WS2作为较早发现的二维材料,它们在光电应用上有着比石墨烯更强的研究潜力,而Pt S2的相关研究较少,在光电领域也显示其巨大的潜力。但是这些二维材料由于受到目前的制备方法及技术的限制,其生产效率低下,质量水平波动较大,成本比较高昂,难以实现其在所有领
电化学储能的巨大市场需求,一方面对传统锂离子电池(LIBs)提出了更高的性能要求,另一方面促进了下一代碱金属离子电池的加速发展,甚至是高能量密度的锂硫电池(LSBs)的发展。但是传统石墨负极无法应用于下一代碱金属离子电池,在锂离子电池中性能也有待提高;多硫化锂溶解入电解液导致“穿梭效应”妨碍了LSBs大规模应用。寻找新型碱金属离子电池负极材料及锂硫电池正极锚定材料是现阶段电化学储能领域中关键问题之
乳糜泻又称麸质敏感性肠病,是一种由携带了HLA-DQ2和HLA-DQ8基因的人群摄入含麸质蛋白的小麦、大麦和黑麦等谷物或其加工食品后引起的原发性小肠吸收不良综合征,同时是一种自身免疫性疾病。早期研究显示,新疆地区人群乳糜泻易感基因携带为我国各省市区最高,同时,该地区人群以面食为主粮,而且少数民族如维吾尔族、哈萨克族和回族与欧洲高加索人基因存在部分重叠。本研究工作开展之前,尚未有该地区的病例报道。由
冬虫夏草(Cordyceps sinensis(Berk.)Sace.)是我国传统的名贵中药材之一,与人参、鹿茸并列被称为传统三大补品。它含有多糖、虫草酸、核苷等多种活性成分,其中多糖是冬虫夏草中一类具有多种生物活性且含量较高的活性物质,本研究团队前期对其化学结构进行了系统表征,并且通过体外细胞实验发现冬虫夏草水提纯多糖是一种具有免疫调节作用的活性多糖。因此,本论文以冬虫夏草水提多糖为研究对象,采
当前,世界正经历百年未变的大变局,新冠肺炎的全球大流行使这一大变局加速推进,保护主义抬头,世界经济下滑,全球市场萎缩,面对国内外环境的深刻变化,党中央提出了要加快构建以国内大循环为主体,国内国际双循环相互促进的新发展格局,这是根据我国发展过程中不同阶段、不同环境和不同条件提出的重大战略部署,是重塑我国国际合作与竞争优势的战略性选择。我们深刻认识到,目前我国在创新产业、引领未来发展的科技储备远远不足
随着经济社会的发展和人们生活水平的不断提高,人们对食物的要求已经由最初的饱腹、维持自身的生存条件逐渐向安全营养、从饮食中获得灵感、满足心理需求的方面发展,因此,对食品工业和加工技术提出了越来越高的要求。近年来,基于美拉德反应的蛋白质糖基化改性逐渐成为改善蛋白质功能性质、提高产品风味的热点,然而,基于糖基化反应的风味产品和改性产品制备主要以传导加热为主,其耗时长、温度高,存在生产周期长、耗能大等问题
钛(Ti)具有出色的生物相容性和耐腐蚀性,但它的中等强度和硬度阻碍了其进一步应用,并且Ti还具有对热处理不敏感以及很高的反应活性等特征,使得以传统制造方法加工Ti部件具有很大的局限性。因此,利用增材制造技术-选择性激光熔化(Selective Laser Melting,SLM),来制造具有超细晶粒且具有复杂结构的Ti部件是一种很有前途的加工工艺,不但可以提高其机械强度还可以保持其他独特的金属性能
近年来超临界CO2在聚合物加工中的应用备受关注,如超临界CO2作为物理发泡剂生产微孔泡沫材料。其中微孔塑料连续成型过程的关键在于均相体的形成,因此,对动态条件下,超临界CO2在聚合物熔体中溶解量和溶解速率的研究显得尤为重要。本文以聚苯乙烯(以下简称PS)为研究对象,从实验和模拟两方面深入研究超临界CO2在聚合物熔体中的溶解过程,即界面吸附的CO2向聚合物熔体内部的扩散过程,以及CO2在动态条件作用
选煤是煤炭生产中不可或缺的一个阶段,通过选煤,原煤被加工成精煤,同时产生选煤副产品(煤矸石、煤泥和中煤)。选煤副产品是含有少量煤和许多杂质的复杂混合物,因其富集灰分、硫分和微量元素,热值低,被认为是劣质燃料。近年来,为处置日益增多的选煤副产品,同时也为缓解能源短缺问题,选煤副产品综合利用被大力倡导,其中燃用选煤副产品发电是选煤副产品综合利用的主要途径之一。然而,选煤副产品综合利用过程中引发的二次环
通常宏观上把金属材料视为均匀材料,实际上金属板材是由大量微小晶粒集合而成的多晶体,这使得金属材料表现为各向异性。金属多晶体的各向异性程度取决于晶粒本身以及晶粒的取向分布。Hosford屈服函数能够很好地描述金属板材的屈服和塑性变形,但其对主应力方向的要求具有局限性,仅适用于三个主应力方向与金属板材正交对称轴方向一致的情况。为此本文在Hosford屈服函数中引入织构系数,建立了广义Hosford屈服