论文部分内容阅读
农业物联网是现代农业与物联网技术的有机结合,推动现代农业从电脑农业、数字农业、精准农业到智慧农业的发展。智慧农业应用中的互联互通技术、感知技术和智能化技术,使现代农业系统运转更加标准化、智能化和集约化,从而促进农业可持续发展。物联网是智慧农业的支撑技术,农业物联网的感知设备正向着微功耗、低成本、高可靠和自适应的方向发展,传感器网络也逐步具备分布式、自组织、多协议兼容和高通量等功能特征,能够实现实时、准确和高效的数据处理。目前物联网技术在农业害虫监测领域仍没有被大量应用,其主要原因有传感器节点性能达不到用户的应用需求、节点采集的数据类型单一、多传感器数据融合的管理和应用水平不高等。因此,研究面向害虫监测的多类型传感器节点融合的物联网技术,对促进物联网技术在害虫监测领域的发展和应用、提高害虫监测的智能化水平、推动农业物联网的发展具有现实意义。论文结合农业物联网相关技术,以害虫监测为应用背景,对基于机器视觉的害虫监测无线采集节点软硬件设计、多类型传感器融合的害虫监测远程无线网络设计、害虫监测无线网络的系统体系架构、无人机监测数据在可视化害虫监测方面的应用等关键技术开展理论及应用研究,主要内容如下:(1)设计了一种适应场景光照变化的害虫监测无线采集节点。节点由桔小实蝇诱捕监测装置、监测控制装置、网络传输模块和太阳能供电装置组成。其中害虫诱捕监测装置包括顶盖、PVC外壳和诱捕瓶;监测控制装置由处理模块、存储模块和视频采集模块组成;太阳能供电装置包括太阳能板、蓄电池、智能控制器和太阳能板支架。设计了害虫目标获取算法、基于代价模型的害虫目标跟踪算法和害虫自动计量算法,并通过试验验证了算法的有效性。在农田环境真实试验后,为了提高算法的鲁棒性,对害虫目标检测算法进行了优化,使用背景差分的方法,提出了一种可适应场景光照变化的桔小实蝇检测算法。详细设计了太阳能供电装置,延长了节点的生命周期。设计了可视化的桔小实蝇远程监测系统,开发了监控跟踪程序、远程服务器程序和客户端程序。农田试验表明,节点网络传输的丢包率为0.7%,改进后的检测算法在中度光照和严重光照影响下的错误率分别为7.21%和12.4%,耗时减少了42.2%,害虫检测准确率为98.7%。(2)设计了多类型传感器节点融合的害虫监测远程无线网络。结合所设计的害虫监测无线采集节点的特性,融合多种类型的气象传感器和土壤传感器节点以及无人机影像监测节点,根据实际应用需求设计了一套软硬件结合、空中地面地下多层协作的害虫监测远程无线网络体系架构,包括感知层的多类型传感器融合、网络层的害虫监测远程系统网络模型、应用层的害虫监测物联网云平台软件。(3)设计了害虫监测远程无线网络的传输模型和传输控制机制。结合实际需求,在网络模型中设计了害虫监测远程网络的拓扑结构、网络架构和传输模型,设计了传输控制机制中的通信协议、数据包格式、多级存储的数据备份机制、差错控制机制和时钟同步策略。设计了基于Web的可视化害虫监测的物联网云平台软件,对多种类型节点采集的数据进行融合和有效管理,同时为用户提供可靠的网络服务。(4)开展了害虫监测远程无线网络系统的综合试验。根据所设计的试验方案,在广州市4个不同行政区的农场和科研基地里,分别部署多类型的气象传感器和土壤传感器及无线网络节点,结合无人机影像监测节点获取了高分辨率的正射影像图和数字表面模型,建立了基于物联网的害虫监测远程无线网络系统,开展了跨区域远距离的综合性网络试验。经过数据统计分析,网络的数据丢包率平均值为2.965%,采用状态?~2检验法进行野值检测,空气温度传感器、空气湿度传感器和土壤温度传感器出现野值的概率分别为2.23%、0.83%和1.69%,4个不同监测区域的温度数据空间相关性最大值为0.9934;经过数据融合后的传感器数据和害虫发生数量的定量关系和相关性分析,影响虫害发生的最关键6大环境因素分别是土壤温度、叶面湿度、空气温度、降雨量、土壤水分和风速,并建立了回归分析方程和害虫预警模型。无人机数据分析表明,监测区的最佳飞行高度为15米,正射影像图的G分量能有效地监测害虫对生菜长势的影响。本文的主要创新工作体现在设计并实现了一种害虫监测无线采集节点、可适应场景光照变化的桔小实蝇检测算法BDDA-LV以及多类型传感器节点融合的害虫监测远程无线网络体系架构等方面。