低质煤的粒度调控和界面修饰及成浆性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:A123_1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水煤浆储运安全便捷、燃烧效率高、污染物排放低,是一种可有力支撑煤炭清洁高效利用战略的类液体燃料。我国低质煤储量丰富,若将其作为水煤浆制备原料,不仅降低生产成本,还能提高低质煤利用效率。但由于低质煤中较高的矿物含量及复杂的煤质组成,导致其无法直接制备合格水煤浆。本论文以我国山东鲁西南地区金达(JD)和级索(JS)两种低质煤为实验样品,通过矿物分离装置对低质煤进行提质与改性处理,并解析了煤质组成、表面性质与颗粒成浆性能的关系;然后通过粒度调控改善精煤颗粒成浆性能,并揭示了微细颗粒在水煤浆级配过程中影响机制;最后通过分散剂的界面修饰作用进一步提高精煤颗粒成浆浓度,并建立了分散剂强化精煤分散的机理模型及其吸附机制。实验样品经矿物分离处理后,对比了低质煤及其精煤的煤质组成、颗粒表面性质及微观结构变化,探究了不同煤颗粒成浆性能的差异。经矿物分离装置处理后,低质煤中高岭石和石英组分被有效脱除,JD和JS煤中矿物脱除率分别为84.04和77.77%。精煤颗粒罩盖矿物显著减少,表面变得更加光滑平整,比表面积与孔隙体积均大幅度降低,具有更强的疏水性。两种精煤最大成浆浓度相比其低质煤均提高了6%,制备的水煤浆热值是其对应低质煤浆体热值的2.99和1.58倍。为改善精煤颗粒成浆性能,通过微细颗粒进行粒度调控,考察了不同级配方式对水煤浆性质影响及微细颗粒在级配过程中作用机制。研究表明,随着浆体中微细颗粒含量增加,水煤浆稳定性和流动性均逐渐提高,而成浆浓度呈现先增大后降低的趋势;当微细颗粒占比为16%时,获得的三峰级配水煤浆浓度最大,可达70%。微细颗粒在粒度级配过程中对成浆浓度存在双面影响:一是适量微细颗粒可填充粗颗粒间空隙,提高颗粒堆积效率,有利于制备高浓度水煤浆;二是微细颗粒对水分束缚能力较强,过量引入将导致浆体中自由水含量减少,使成浆浓度下降。通过分散剂修饰作用进一步提高颗粒成浆浓度,研究了木质素磺酸钠(SLF),聚萘甲醛磺酸钠盐(NSF)和聚苯乙烯磺酸钠(PSS)三种阴离子分散剂对精煤颗粒成浆性能的影响,并揭示了分散剂在精煤颗粒上吸附机制。研究表明,NSF修饰的精煤颗粒成浆浓度最大;分散剂吸附于精煤与水界面,增强颗粒荷负电性作用是改善精煤颗粒成浆性能的主要原因;胶体稳定性理论计算结果表明分散剂修饰后颗粒的静电排斥能增大了1~3倍,颗粒能够更好地维持稳定分散状态。精煤颗粒主要由可燃有机质、高岭石、石英和黄铁矿组成,由于分散剂NSF在石英上吸附量占比最小,其在精煤颗粒上吸附主要受煤中有机质、高岭石和黄铁矿影响;XPS和接触角测试表明,分散剂在煤上吸附机制为NSF中疏水基团与有机质表面的疏水结合作用,以及NSF中亲水磺酸基团与金属元素Al和Fe的成键作用。为分析成浆浓度提高带来的经济效益,考察了水煤浆浓度及二氧化碳捕集与封存装置对煤制甲醇工艺经济性影响。结果表明,水煤浆浓度由63%增加至68%,对于180万t/a甲醇生产车间每年可节省生产成本1.86亿CNY,并减少CO2排放量0.65 Mt。引入二氧化碳捕集与封存装置(CCS)将使单位甲醇生产成本增加7-8%,但可以有效缓解由于征收碳税带来的甲醇成本上涨问题,其经济平衡点为碳税费用60 CNY/t。
其他文献
在枪支机件的生产加工过程中,由于机床振动等随机因素的影响,加工工具会在枪支机件表面留下一些独有的特征。枪械使用过程中的腐蚀磨损等因素会使这些特征进一步特性化。这些表面特征在枪击过程中会传递到子弹弹头及弹壳表面,可以为案件侦破提供重要线索以及为之后的法庭判决提供证据。在实际比对中,弹痕特征十分复杂,目前的弹痕识别系统的主要用途是作为弹痕专家进行识别的辅助工具。由于人工识别的主观性,其识别结果的可信度
过渡金属催化的烯炔环化反应是合成环状化合物最有效的方法之一,其中环戊烯金属化合物被广泛接受为此类反应的重要中间体。尽管基于不同的底物组合,化学家们已经发展了多种类型的烯炔环化反应,但尚未实现过高效的非对映多样性环化过程。同时,多取代六元杂环骨架广泛存在于许多具有生理活性的天然产物或人工分子中,实现此类骨架的非对映多样性合成,具有重要的应用价值。本论文针对上述不足,结合当前立体多样性合成的发展趋势,
SOI LDMOS功率器件的栅极、源极和漏极在同一表面,易于集成,同时具有较快的开关速度和较小的寄生效应等优点,作为电源开关,是高压电源集成电路的核心器件,在空间电源集成电路中有广阔的应用前景。本文基于典型SOI高压LDMOS功率器件,结合理论分析和TCAD物理仿真,研究了总剂量辐射、单粒子辐射对其静态和瞬态电特性的影响,揭示了总剂量辐射累积剂量致栅控电流特性和阻断特性变化规律,以及单粒子辐射致器
在国家创新体系中高校科研创新地位举足轻重,随着互联网的飞速发展,高校科研创新过程变得更具复杂性和时效性,科研人员对于科研所需的知识需求也日益强烈,而从图书馆获取所需的科研知识资源和专业的科研服务支持,是实现科研创新的有效手段与重要途径之一。当前,智能服务的需求和情境正成形成,并将成为未来发展的新方向。面向高校科研创新,目前国内外一些著名的高校图书馆正开展智能服务的理论探索与实践应用;然而,在图书馆
在混凝土中使用粉煤灰代替部分水泥是一个有效利用粉煤灰的方式。在混凝土中掺入比水泥更多的粉煤灰,即粉煤灰占总胶凝材料的质量分数大于50%,可得到大掺量粉煤灰混凝土。这种混凝土存在诸多优点,例如更具发展潜力的后期强度、更低的干缩、更经济的制造成本,在实际工程中也得到了一定程度上的应用,包括大体积混凝土、自密实混凝土、碾压混凝土和纤维增强混凝土等。但是目前大掺量粉煤灰混凝土应用范围不广,这主要与其早期强
随着高性能计算的发展,HPC系统的规模和复杂度大幅度增加,其计算能力从P级向E级发展。这就为并行程序的移植和优化带来了极大的挑战。并行程序向大规模HPC系统移植时通常面临着执行效率低、可扩展性差的问题,难以充分利用硬件系统的计算资源。这会造成HPC系统计算资源和电力资源的浪费,增加运行成本。此外,由于电力成本和供电系统的限制,功率也已成为大规模HPC系统尤其是未来E级系统的关键设计约束。这就需要针
随着航空航天以及汽车等运载装备向高可靠和长寿命发展,迫切需要采用复杂整体金属薄壳件代替传统的拼焊构件。目前,通常采用以薄板和薄管为坯料的流体压力成形技术制造这类整体薄壳件,其成形时将经历复杂的连续非线性加载过程,对金属薄壳材料的变形行为和成形极限都有显著影响。金属薄板和薄管具有的各向异性特征,使得变形更复杂、缺陷预测更难。本文通过实验和理论分析对金属薄壳在复杂加载条件下的变形规律、硬化行为和成形极
腔光力学是研究光学(微波)腔场与机械运动之间相互作用的一门新兴学科。近年来,由于在前沿基础研究的巨大成功和实际应用的广泛潜在价值,腔光力学吸引了越来越多的研究兴趣。目前,腔光力系统已经可以在众多实验平台上实现,其日益成为研究宏观量子效应的理想系统。众所周知,基于腔光力系统实现对宏观机械振子的有效量子操控,先决条件是有效抑制掉环境热噪声的不利影响,将机械振子成功地冷却到量子基态。当前,许多方案已经对
固体氧化物燃料电池(SOFC)作为一种高效的全固态能源转换装置受到了人们广泛的关注。目前,开发中低温阴极材料是该领域的研究热点。铁基钙钛矿氧化物具有适宜的热膨胀系数、较高的稳定性以及较低的生产成本,被认为是极具潜力的阴极材料体系。本论文以改善阴极的物理和电极性能为研究目的,选择LaBaFe2O6-δ和LaBa0.5Sr0.5Fe2O6-δ作为研究的母体材料,通过在材料的A位、B位以及O位采取非化学
随着能源的日益紧缺、环境的日益污染,开发高效清洁可再生的新型储能装置迫在眉睫。在众多储能装置中,具有高能量密度和长循环寿命的锂离子电池成为热点。负极材料很大程度决定着锂离子电池的性能,目前商业的负极材料主要使用的是稳定性好、价格低廉的石墨。然而,石墨具有低的嵌锂电位,在循环过程中极易产生锂枝晶,导致电池短路。此外,较低的理论容量(372 mAh g-1)使得石墨负极不能满足人们对高能储存装置的需求