论文部分内容阅读
本文中我们提出Korteweg-de Vries方程的两种有限元格式:Euler半隐有限元算法和Crank-Nicolson(C-N)外推半隐有限元算法.其中,我们用有限元方法进行空间逼近,时间离散分别建立在Euler向后差分或C-N中心差分格式,且非线性项采用半隐格式处理.对于理论分析,通过引入一个相对应的时间离散系统,我们把误差分离成两部分,分别计算时间误差估计和空间误差估计.接下来,根据正则性假设,我们得到最优误差估计以及证明出上述两种格式在时间步长小于或等于一个常数的时候是无条件收敛的.最后,用数值模拟验证理论分析的正确性.