【摘 要】
:
随着工业生产线智能化水平的提升,焊接机器人被广泛用以提高生产效率。在实际生产过程中,焊接机器人不仅需要完成数量众多的焊点焊接任务,且还需尽可能的提高生产效率、减少能量消耗、运行平稳。因此,本文以焊接机器人为研究对象,对过给定路径点的焊接机器人最优运动轨迹展开深入研究。首先对白车身侧围结构和焊接机器人路径规划影响对象进行了研究,分析了制造资源、点焊工艺及资源整体布局对焊接机器人运动规划的影响。基于数
论文部分内容阅读
随着工业生产线智能化水平的提升,焊接机器人被广泛用以提高生产效率。在实际生产过程中,焊接机器人不仅需要完成数量众多的焊点焊接任务,且还需尽可能的提高生产效率、减少能量消耗、运行平稳。因此,本文以焊接机器人为研究对象,对过给定路径点的焊接机器人最优运动轨迹展开深入研究。首先对白车身侧围结构和焊接机器人路径规划影响对象进行了研究,分析了制造资源、点焊工艺及资源整体布局对焊接机器人运动规划的影响。基于数字化工厂软件Process Designer对白车身侧围焊接线进行了工艺规划,得到了初始焊点焊接顺序,并结合实际参数对焊接机器人进行运动学分析,根据D-H参数在MATLAB中建立了焊接机器人运动学模型,利用MATLAB Robotic Toolbox完成了正逆运动学求解,为焊接机器人轨迹优化提供了必要的理论支持。接着,以焊接机器人最短焊接路径为切入点,通过将焊接机器人路径规划问题划为TSP问题求解,引入蚁群算法,通过大量的仿真实验,获得了算法中寻优能力较好的各参数取值范围,同时针对蚁群算法存在的收敛速度慢、易陷入局部最优解等缺点,引入了信息素更新策略和动态随机扰动策略对算法进行改进,并对改进蚁群算法进行仿真验证,通过将仿真结果与基本蚁群算法、引入单个改进策略的蚁群算法的仿真结果进行对比分析,证明了改进蚁群算法的可行性和有效性,为后续焊接机器人轨迹优化提供了最短焊接路径。其次,在焊接机器人最短焊接路径的基础上,即基于给定路径点,对焊接机器人进行时间最优轨迹规划,利用B样条曲线的特点,选择了三次B样条插值法进行焊接机器人轨迹规划,仿真得到的焊接机器人各关节角度、角速度和角加速度曲线连续且光滑,在运动学约束条件下,利用改进遗传算法对轨迹插值时间进行优化,仿真结果得出焊接机器人最优运行时间为96.3s,优化效率达到了25%,并使用三次B样条插值法构造了最优时间下的焊接机器人各关节轨迹图,仿真图形显示了所有关节的运动轨迹稳定且连续,实现了焊接机器人时间最优轨迹规划。然后,建立焊接时间最短,能耗最少的多目标优化函数,采用NSGA-Ⅱ算法求解焊接机器人多目标优化轨迹,在算法中引入了罚函数项来处理焊接机器人运动学约束,将多目标函数模型转换为了无约束的多目标函数模型,并建立了算法所需的适应度函数,仿真得到了Pareto最优解集,根据焊接任务需求选择了其中一组优化解,通过与时间最优算法结果相比,多目标优化算法在减少焊接机器人运行时间的同时也减少了其能量消耗。最后,在Process Designer构建的焊接生产线的工艺规划基础上,利用数字化工厂仿真软件Process Simulate搭建了焊接机器人点焊白车身侧围工件的虚拟仿真实验平台,建立了制造资源的运动模型,定义了焊接机器人的焊接任务,对算法规划的最优轨迹进行仿真验证,针对仿真中出现的碰撞干涉问题提出了解决方案,最终得到了一条无碰撞焊接路径,通过分析该路径下焊接机器人各关节运动曲线以及轨迹优化前后的仿真时序图可知,优化算法规划焊接机器人运行轨迹对实际加工有指导意义,有利于进一步优化现场实际生产的效率。
其他文献
作为深度学习主流算法之一,循环神经网络(Recurrent Neural Network,RNN)对处理时序信息具有更敏感更出色的能力。因此,循环神经网络被广泛使用于电信、电力、人机交互等许多传统以及新兴智能领域。然而,在许多应用场景中,资源有限的终端设备难以应用循环神经网络。这主要的原因在于神经网络结构具有较高的计算复杂度,并且需要大量的计算资源以及存储资源。为了解决此问题,研究者提出了许多合理
伴随着资源枯竭和环境污染等问题日益突出,新能源汽车逐渐活跃于大众视野。与传统燃油汽车的驱动装置不同,新能源汽车采用电机集成驱动,电机噪声远小于内燃机噪声,但由于缺失了发动机噪声的掩蔽效应,传动系统产生的振动噪声显得更为突出。为了追求更高的行驶速度,电机高转速输入导致对齿轮传动系统的设计也更加严格,多级齿轮传动系统的振动和噪声成为关注的重点。本文以某款新能源汽车的多级齿轮传动系统为研究对象,以改善多
在生活质量提高的今天,人们对高清晰度图像的需求变高,之前的超分辨率重构方法已不能满足人们对于高质量图像的需求。所以基于深度学习的超分辨率(Super-Resolution,SR)技术被提出来提高图像的质量以满足多领域各人群的需求,其应用价值极为广泛,例如卫星监测、医疗军事、数字媒体,遥感等。近年来,深度学习技术不断发展,卷积神经网络(CNN)在SR重建方面取得很大成功。本文重点研究CNN的单幅图像
图像超分辨作为计算机软件层面的算法,其目的是对图像中的模糊部分进行处理,从而从低分辨率图像中恢复细节信息,重建高分辨率图像。当前,基于卷积神经网络的图像超分辨技术通过对低分辨率图像特征的自主学习,重建的高分辨率图像获得了显著的突破。因此,该类方法受到了国内外学者的广泛关注,并成为现今图像超分辨领域的研究焦点。但图像超分辨是一个高度不适定的问题,同样的一幅高分辨率图像可以通过不同程度的低分辨率图像所
乳腺癌是全球最常见的癌症,其发病率和死亡率居高不下,严重危害着女性的健康。组织病理图像分析是乳腺癌诊断的“黄金标准”,但图像的复杂性和多样性使得病理医生的诊断过程耗时耗力且效率低下。另外,病理医生的经验阅历不同以及分析病理图像时的主观性甚至可能会导致误诊。目前,深度学习在计算机视觉和图像处理等领域崭露头角,也为计算机辅助诊断提供了一种新的思路和途径。本文以苏木精-伊红染色的乳腺组织病理图像数据集为
从水下视频和图像中自动探测和识别鱼类目标对于评估渔业资源、生态环境监测等具有重要意义。但由于水下图像存在着低光照、水体浑浊、海床背景复杂、鱼类姿态多样、目标尺寸变化大、分辨率和对比度低等问题,传统的手工设计特征提取和单纯使用基于CNN的目标检测等算法并不能满足真实水下检测需求。在实现水下鱼类目标检测过程中,首先需要解决水下低分辨率、低质量的鱼类图像问题,以及在得到重建的高分辨率鱼类图像后,鱼类目标
乳腺癌是女性常见癌症之一,严重影响女性身心健康。计算机辅助诊断(ComputerAided Diagnosis,CAD)模型能有效辅助病理医生临床诊断工作,实现早发现、早诊断、早治疗,为提高人们生活质量奠定重要基础。现有研究工作:一方面,医学样本稀缺,模型易过拟合;另一方面,多使用单类别特征,而未充分挖掘并利用异构图像特征间蕴含的跨模态病理语义,同时忽略不同特征在乳腺癌图像识别中的重要性。为此,提
复杂时变动态系统在科学与工程应用领域中是非常重要的一类问题。此外,实际应用中噪声的存在会影响模型性能,导致求解精度不高等不良效果。因此含有噪声干扰下的时变动态系统的求解是值得探究的。传统的固定参数的收敛微分神经网络由于参数选定不能超过参数变化的上限,其收敛效果以及收敛速度都会受到初始极限值的限制。因此,根据自适应时变参数设计思想,论文提出一种新型的混合变参动态学习网络(Mixed variant-