六自由度工业机器人的绝对位置测量及运动学标定技术研究

来源 :天津大学 | 被引量 : 1次 | 上传用户:jinshuxian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在人工智能技术日新月异的大趋势下,工业机器人被应用到的领域不断扩大,对其绝对定位精度的要求不断提高。然而,加工、装配过程中存在的误差,以及磨损等因素导致工业机器人的绝对定位精度不理想,难以满足高精度作业场景的要求。因此,需要对工业机器人末端的位姿进行定期检测和误差补偿,使工业机器人末端实际位姿与理想位姿之间的误差值满足特定场景的技术要求。基于此,本文以ABB IRB2600型工业机器人为研究对象,开展了机器人末端位置坐标测量技术及运动学标定等技术的相关研究。主要研究内容如下:首先,机器人的运动学模型及误差模型进行了研究。对ABB IRB2600型工业机器人正、逆运动学模型的公式进行了推导,并用Matlab软件和Robot Studio软件进行了仿真验证。基于MD-H模型和微分变换的思想建立了机器人的误差模型,并用Matlab软件进行了仿真验证。其次,对位置测量系统进行了研究。介绍了基于球坐标系和直角坐标系的位置测量原理,介绍了激光跟踪仪和激光跟踪干涉仪的工作原理和相关参数。对五台激光跟踪干涉仪测量系统的自标定原理进行了推导。提出了一种基于长度测量的位置测量系统精度对比方法。完成了坐标系之间的转换,使测量系统测得的实际位置坐标与机器人控制系统输出的名义位置坐标统一在一个坐标系下。然后,对机器人几何参数误差的辨识算法进行了研究。介绍了基本粒子群算法的计算原理,对算法中存在的惯性权重和加速度因子不能自适应的问题进行了分析,并提出了改进方案。结合机器人运动学标定的目的以及误差模型建立的原理,为粒子群算法设计了目标函数。对粒子群算法辨识机器人几何参数误差的可行性,以及粒子群算法改进方案的可行性进行了仿真验证。最后,进行实验验证,开发上位机软件。进行五台激光跟踪干涉仪测量系统的搭建和自标定实验。完成两个位置测量系统的精度对比实验,实验结果显示,在测量距离约为500mm时,激光跟踪仪测量系统的误差为0.0379mm,激光跟踪干涉仪测量系统的误差为0.0194mm。选择精度较高的测量系统完成机器人运动学标定实验,实验结果显示,经基本粒子群算法和改进粒子群算法辨识补偿后,机器人位置准确度的均值分别由原来的0.3192mm降低到0.1422mm和0.1180mm,分别降低了55.45%和63.03%。完成实验验证后,集成本文中提到的相关算法程序,设计开发了六自由度工业机器人运动学标定软件。
其他文献
在浑浊水中,由于受到散射介质对光波的散射和吸收的影响,目标探测的可见度显著降低,传统光学成像的对比度和清晰度严重下降,图像质量已经不能满足实际应用的需求。偏振作为光波的基本物理特性之一,对偏振信息的获取能得到更多维的目标信息。偏振成像技术利用浑浊水下散射粒子的偏振特性,分析由粒子散射和反射带来的部分偏振光,进而可以通过去除背向散射光实现图像质量的提升。但是在强散射介质环境下,仅依靠偏振成像技术进行
学位
自锁模飞秒激光器诞生之初,它超高的时间分辨能力以及独特的梳齿状光谱结构引起了人们的极大关注,这些独特特性使得飞秒激光在阿秒技术、任意波形产生、精密光谱学、精密测量等多个领域中有极大的影响。双光梳技术利用了两台光频梳之间的相互采样,能够对超快的时间过程进行拉伸,从而使超快过程的探测成为可能。在此基础上,两套光频梳之间的采样过程具有多种不同模式,不同模式在进行时域拉伸的时具有不同的特点。为了提高双光梳
学位
在耗散非线性系统中,时域上相邻的两个孤子通过相互作用力会形成孤子分子。该结构蕴含着自然界中普遍存在的多体动力学规律。揭示这些规律能够加深人们对流体力学、神经生物学、等离子体物理等领域中耗散孤子的产生与相互作用机理的认识,具有突出的理论与实践价值。钛宝石激光器凭借自身天然的特性,能产生几十飞秒的超短脉冲,形成百飞秒间隔的孤子分子。本论文主要对这类近程的紧束缚孤子分子进行了理论分析和实验研究。结合色散
学位
目前的深结构零件内壁表面周期性微结构超精密或精密加工制造研究中,需要对表面的微观形貌进行测量,检测加工质量的同时指导工艺改进。该类零件内壁表面结构复杂,可能存在大斜率粗糙的面形区域,微观形貌测量难度较大。同时受到目前的内壁测量方法在测量精度、系统结构尺寸等因素上的制约,现有的测量手段难以满足该类零件的内壁微观形貌测量需求。因此研究中开发了一种新型内壁白光干涉测量系统,通过宽光谱干涉原理获得零件内壁
学位
基于微机电系统(MEMS)的复合法珀光纤传感器不仅具有法珀传感器的优势,同时还具有MEMS传感器一致性好、可靠性高、可批量生产等特点。本文围绕对液体多种参量测量的需求,开展了基于MEMS技术的复合法珀光纤传感器的研究。设计了基于硅-玻璃阳极键合和硅-硅直接键合的两种MEMS复合法珀光纤传感器,分别实现了对液体温度、折射率和液体温度、压力的同时测量,批量生产了传感芯片并验证了传感器一致性。本文为用于
学位
太赫兹波因在诸多领域的巨大潜力近年来受到广泛的关注,而自然界中对太赫兹波有理想电磁响应的材料相对较少。具有可调电磁特性的超材料的出现有助于解决太赫兹波段功能材料匮乏的问题,尤其是兼具手性特性的超材料可通过偏振加载更多的电磁信息。但是由于其复杂的结构难于加工,手性超材料的应用受到了一定的限制。外在手性超材料的出现有效地缓解了这个难题,其平面结构很好地契合现有的平面材料加工技术。本论文主要将外在手性超
学位
飞秒激光由于自身峰值功率高、脉冲持续时间短的特点,在材料加工领域有着广泛应用。飞秒激光可以应用于减材加工,例如打孔、打槽;表面微结构加工,例如螺旋相位板制备以及表面金属改色;还可以进行增材加工,例如利用双光子聚合制备纳米结构,利用金属烧结制备零件。众多材料中金刚石具有独特的机械、热、电学和光学性能,还有材料科学中已知的最宽波长透射光谱。但由于自身高硬度和脆性的限制,传统机械加工方式有着诸多弊端,而
学位
基于稀土离子热耦合能级的荧光强度比测温技术凭借其较高的准确性、不受环境影响等优势成为了非接触式测温领域的研究热点。就稀土离子掺杂的上转换荧光材料而言,不仅拥有优异的发光效率,而且其激发光源具有优异的生物组织穿透性,因此在生物测温上也有着深远的研究潜力。本论文通过分析以钨酸盐为基质的上转换荧光材料的光谱特性,采用改变掺杂稀土离子浓度、控制合成方式等手段,提升了“荧光强度比”测温技术的灵敏度并且降低了
学位
太赫兹波因其潜在的广阔应用前景受到国内外研究人员的关注,但太赫兹功能器件的匮乏阻碍了太赫兹技术的发展和应用。近些年来,超表面(一种超薄的利用亚波长单元结构操控电磁波特性的人工材料)的出现为解决这一问题提供了重要手段。本学位论文对基于相位不连续超表面的太赫兹分束器展开研究,具体内容如下:1、对超表面的相关理论,如费马原理、惠更斯-菲涅耳原理、广义斯涅耳定律等展开研究。2、研究了基于全介质相位不连续超
学位
随着半导体工艺的进步,微机电系统(Micro-electro-mechanical Systems,MEMS)声学薄膜以高信噪比、低功耗的优点逐渐取代了驻极体麦克风,成为智能音箱、耳机等产品的核心器件。MEMS声学薄膜对流片、存储和封装环境要求极高,附着的表面缺陷会影响器件的振动模态。与传统检测技术相比,显微机器视觉缺陷检测技术具有无接触、高精度的优点,与本课题有很好的适用性。本文提出2种无监督的
学位