论文部分内容阅读
随着柴油机功率密度的提升,柴油机气缸盖所承受的热负荷和机械负荷越来越高,致使气缸盖不同部位的使用环境差异增大,具体表现在:缸盖火力面工作温度非常高,要求材料具有很好的导热性和抗氧化性能,其它部位要求材料具有高强韧性能。然而,采用传统均质铸铁材料制造的柴油机缸盖由于无法同时兼顾强韧性、导热性及抗高温氧化等性能,致使国内外高功率柴油机气缸盖常发生热应力开裂问题。因此研究新型复合铸铁材料制备方法及组织性能具有非常重要的理论与工程实际意义。本文开发了三种复合铸铁材料制备方法:1)铸型涂抹变质涂料方法;2)局部适量增大凝固速率方法;3)双金属液铸造方法。综合利用OM, EPMA,导热系数测试以及抗拉强度测试等检测手段分析不同工艺对制备的复合铸铁组织和性能的影响。在涂料法制备复合铸铁工艺中,通过改变涂料中FeS变质剂含量在蠕墨铸铁表面成功制备一层灰铸铁,形成灰/蠕复合铸铁。随着FeS含量的增大,表层灰铸铁的厚度先逐渐增大后达到平衡,最大厚度达到5.3mm;从表层到内部,Mg元素含量逐渐升高,S元素含量逐渐降低,石墨形态由A型向A+D型,最后变为D型石墨过渡。表层灰铸铁的形成机理为S与Mg形成MgS等化合物,致使表面的残余Mg含量降低,发生蠕化衰退现象。通过导热系数测试证明灰/蠕复合铸铁铸件表层导热性能优于铸件本体。在制备球/蠕复合铸铁工艺中,表层球铁层厚度随着球化剂涂料中镁元素含量增加而增加,采用25%稀土镁+15%纯镁混合变质剂涂料效果最优,能够在蠕墨铸铁铸件表层得到34mm左右的球墨层。在研究冷却速率对铸铁石墨形态影响的试验中,当冷却速率增加时,灰铸铁表层石墨由A型石墨转变为D型石墨,表层D型石墨层厚度随冷却速度增大而增大;蠕墨铸铁表层蠕虫石墨会转变为球状石墨,且随着蠕墨铸铁表层凝固速率的增加,表层球化层厚度与球化率均明显上升。在研究双金属液浇注复合铸铁的工艺中,通过计算机数值模拟进行双金属液流场及温度场模拟研究,研究发现采用底注式浇注系统浇注下层金属液,采用缝隙扇形式浇注系统浇注上层金属液,浇注速度选择为5cm/s,两种金属液浇注间隔时间选择为20s,下层金属液浇注高度超过理论结合面15mm,结合层附近产生的扰动程度较小。通过实际浇注灰/蠕墨铸铁试验表明,浇注的铸件从底向上的石墨形态分别由片状石墨向蠕虫状石墨过渡分布,且石墨形态过渡比较平稳,铸件纵截面上石墨形态无明显混杂。制备出的灰/蠕复合铸铁的抗拉强度高于灰铸铁,而其导热性能高于蠕墨铸铁。