基于随机分布算法的多尺度银粒子烧结动力学研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:coni
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
宽禁带半导体的高性能的充分应用很大程度上依赖于封装技术以及封装材料的选用。随着禁铅令在全球的推广,人们发现烧结银技术是理想的可替代成为高温应用的芯片焊接技术之一。然而,银膏制备及保存成本、工艺可靠性等一系列问题成为了限制银烧结技术大范围推广应用的一大障碍。鉴于此,本文主要对烧结银中的材料制备、烧结工艺优化、银烧结中颗粒扩散的微观机理等进行研究,以优化烧结银膏配方为核心,降低材料成本,为助力推广烧结银技术在宽禁带半导体中的大规模应用提供有利参考依据。本文中主要的研究成果如下:(1)在纳米银颗粒的制备实验中,通过使用不同的还原剂与硝酸银进行反应,在不同的还原速率下,所生成的颗粒粒径也会有所不同。(2)为了验证银膏烧结的可行性,采用了一种传统的真空回流系统进行无压烧结以抑制孔洞的生成。结果表明,真空室压力对银烧结层在干燥过程中烧结空洞缺陷的形成有明显影响。这种烧结方法不仅可以实现无孔洞烧结,而且可以很好地避免其他的封装组件的氧化问题。(3)基于分子动力学,研究采用随机算法建立了模拟银膏初始涂层形貌的模型,并分析了不同粒径的颗粒对烧结孔隙率的影响。结果表明,与使用大尺寸银颗粒的烧结工艺相比,在相同的烧结条件下,使用多尺度银颗粒的烧结工艺将提高致密化程度,这从理论上验证了在大尺寸银颗粒中添加小尺寸银颗粒的可行性。(4)基于以上对烧结多尺度颗粒的实验与理论结果,为了进一步研究异构银膏对烧结致密的影响,对片-颗粒银的烧结致密进行研究。结果表明,片银中添加纳米颗粒能够对烧结致密有帮助,而微米颗粒中适当添加片银有助于其烧结的致密化。本文从颗粒制备、到银膏中的成本配比微观机理研究、再到工艺设定等从多个层面入手对烧结银技术进行研究,以求得到一个更优的烧结方案与银膏配方指导方案,为烧结银技术得到广泛应用提供一定商业参考价值。
其他文献
伴随当前电子器件向着微型化与集成化的发展,传统散热器件与低导热性能流质的热管理参数已经难以适应当前高热流密度器件的散热需求,严重影响芯片工作时的性能与可靠性。而拥有小体积特点的微通道散热器件与拥有高散热性能的纳米流体相结合,被认为是解决存在空间限制下的高热流器件散热问题的高效方案。作为一种新型散热工质的纳米流体,其粘度与导热系数是作为运用在传热场景下的两个重要热物理参数,关系着散热设备的运输效率与
学位
45钢有良好的塑性、韧性和易切削等优点而应用广泛,45钢材料在实际的应用中,工作表面不仅有平面,还有柱状面、锥状面、球状面等不同形状的表面,受到表面形状和工作环境的影响表面通常会出现磨损、锈蚀及裂纹等缺陷。电子束表面强化技术对工件变形量小且能量利用率高,采用扫描电子束实现柱面45钢表面强化,提高其表面综合性能。本研究以传热学理论为基础,建立柱面45钢扫描电子束表面强化过程温度场的数理模型,利用有限
学位
学位
曲轴是发动机的关键部件,起着承受载荷传递动力的作用,其品质直接影响发动机的整体性能和使用寿命。连杆颈处于曲轴的偏心曲拐部位,在曲轴运转时经受着复杂的冲击载荷和强烈的摩擦,易导致轴颈表面磨损失效,需对连杆颈表面进行强化处理。感应淬火是实现连杆颈表面强化的关键工序,目的是提高曲轴的机械性能及疲劳强度,其工艺参数对曲轴连杆颈的性能影响显著。本文以桂林某厂生产的48Mn V钢X型曲轴连杆颈为研究对象,基于
学位
镨钕合金是现代制造业用量最大的重稀土金属,目前电解还原是提炼镨钕合金的主要工艺,其中熔融成品的提取是最关键的工序之一。因稀土属性的特殊性,生产中存在高温、腐蚀、成品氧化、环境污染等现象,如何采用虹吸法是业内专家高度关注的问题;由于当前应用技术不成熟,严重制约了配套装备自动化水平。运用计算机辅助设计,对高温流场变化进行实时仿真,能准确反映虹吸过程熔池流场流态,以此为虹吸装置结构优化提供依据,可有效缩
学位
学位
学位
在环境资源绿色节约型、可持续发展型的新时代背景下,国内朝气蓬勃的空调行业正逐步走向国际化舞台,向全世界展现中国制造的魅力。空调的核心部件由换热铜管与铝箔翅片组成的管翅式换热器也在向着小管径化(φ≤5mm)、高换热效率化、制造成形工艺更优化发展。传统的机械式或机械微收缩式换热器胀接成形技术,在进行小管径管翅式换热器制造成形时造成的换热铜管轴向收缩、内螺纹损伤和翅片过度变形等缺点更加显著,亟需新型换热
学位
微通道在对流换热领域具有高度的研究意义,纳米流体由于其本身具有的固液两相混合的特性,使得其作为一种新型的高效传热介质,在散热领域具有广阔的应用前景。磁性纳米流体的出现,不仅具有高导热性,并且能够在通道内具有可控性。本文主要以1%体积分数的Fe3O4-H2O纳米流体为换热工质,当量直径0.8mm的栅形微通道为实验通道,对其在温度场与磁场耦合作用下的流动换热特性进行了探讨,分析了在外加磁场条件下Fe3
学位
学位