异质元素掺杂碳材料的制备及电磁特性研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:danble
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
5G技术的发展给全球经济和社会生活带来了机遇和便利,然而不断增加的电磁干扰正在消耗这些优点。因此,当前对解决电磁波辐射问题提出了必然要求,需要相应地研究高效的电磁波吸收材料。众所周知,碳纳米材料以其相对较低的密度、可调的性能和形式的多样性被越来越多应用,并被认为是一种理想的电磁波吸收材料。各种纳米结构的碳材料,如碳纳米纤维(CNFs)、碳纳米管(CNTs)、碳纳米片(CNSs)和石墨烯,由于其优异的导电性和载流子迁移率使其作为基质材料具有优异的介电性能。尽管已经研究制备了许多纳米碳微波吸收材料,但由于复磁导率和复介电常数之间的巨大差别,使得其在电磁波吸收领域的实际应用受到限制,因此控制阻抗匹配仍然是一个巨大的挑战。利用磁性金属(Fe、Co、Ni)、金属氧化物(NiO、ZrO2)和铁氧体(ZnO·Fe2O3、Ni-Zn·Fe2O4)制备碳纳米材料基复合材料是改善其阻抗匹配和电磁波吸收性能的重要途径。然而必须指出的是,由于碳纳米材料中掺杂了金属基掺杂物,其增强的电磁波吸收性能是以碳纳米材料的低密度和耐腐蚀性为代价的,这限制了其在耐久性方面的应用。因此,尝试更换这些金属基掺杂物,特别是研究电磁波吸收体的构效关系,对提高复合材料的耐久性和电磁吸收性能具有重要意义。近年来,金属有机骨架材料(Metal organic frameworks,MOFs)因其结构简单、热稳定性好等优点成为一种很有前途的杂化功能材料。在高温过程中,大量具有高热稳定性的MOFs变成了氮掺杂的纳米碳材料,由于其特殊的构效关系,使得含有原子分散金属位点的电磁波吸收材料成为一个新的研究热点。具有原子分散金属位点的材料有效的解决了碳材料因为金属掺杂物的复合所带来的问题。MOFs材料中具有原子分散金属位点也称为金属-氮-碳材料(M-N-C,M为非贵金属)拥有独特的结构和较高的原子利用率,利用氮原子固定分布的单个金属原子,是一种新型的原子尺度替代材料。同时,原位热解化合物@MOFs杂化材料也是制备M-N-C复合材料的一种很有效的方法。棉花、植物叶片、花生壳、麦秸等生物质材料因储量丰富、可再生、成本低、重量轻、无毒等优点而备受关注。棉花是最常见的含官能团的生物质材料之一,并且天然含有C、O、S、P、N等多种掺杂元素。热解过程导致碳化纤维形成中空结构,意味着所得纤维具有超轻密度。在这项研究中,我们使用MOFs和天然棉花作为自我牺牲的前驱体,对其电磁波吸收特性进行了详细的研究。研究发现,上述制备的碳材料在不引入二次掺杂物的前提下引入少量异质元素,就可以通过分离局部微结构的电荷和诱导相当大的电偶极子极化来有效地调节介电损耗。
其他文献
热轧带肋钢筋是建筑用钢中应用最为广泛的钢种,每年生产及用量巨大。根据2018年我国颁布的热轧带肋钢筋新标准,制定了更加严格的生产规范,对铁素体、珠光体组织等进行了严格要求界定,以提高国内的钢筋质量。新国标颁布后,余热处理生产方式因其性能稳定性差而逐渐被V、Nb等微合金化技术路线取代。国内巨大的钢筋产量造成了金属V、Nb的大量使用,导致V合金一度价格高昂。作为适用范围广、使用量巨大的普通钢铁产品,热
学位
相比于其它金属,镁合金具有密度小以及电磁屏蔽性较好等特点。但是由于镁合金的晶体结构导致其塑性成形能力较差且力学性能较低,从而限制了其应用范围。在工业上常用挤压法对镁合金进行变形加工,从而制得具有较好力学性能的管棒型材等产品。然而挤压材力学性能的调控往往需要通过大量的工艺实验来弄清工艺参数变化对组织性能的影响规律,从而获得挤压材合理的工艺窗口。但这一过程存在工作量大、周期长以及实验成本较高等问题。通
学位
二维过渡金属碳化物、氮化物或碳氮化物—MXenes材料最开始是由美国Drexel大学的Gogotsi教授和他的团队发现和提出的。MXenes是其前驱体MAX相中的A元素(这里指Al元素)被选择性刻蚀掉而形成层片状结构的二维材料。因此MXenes的通式为Mn+1XnTx,其中M代表早期过渡元素(主要是ⅢB~ⅥB的元素),X代表C或N,Tx代表表面官能团(例如:-OH,-O和-F),n取1~3。因其特
学位
Al-Zn-Mg-Cu系合金属于可热处理强化的超高强铝合金,其比强度高,塑性好,具有一定的耐腐蚀性,广泛应用于航空航天领域。纵观Al-Zn-Mg-Cu系合金发展史,其逐渐由单一高强度发展为兼具高强度、高韧性、高抗疲劳性和耐腐蚀性的综合性能,而造成综合性能的大幅度提升是通过调控合金成分这一手段来完成的。其主要方式为,调控主合金元素含量,适当添加微合金元素含量,严格控制并减少杂质元素含量。其中主合金调
学位
钛及钛合金具有较高的比强度、耐蚀性和良好的生物相容性,被广泛应用于航空航天、海洋船舶、医疗等领域,但是钛材加工性能较差,原料成本较高,限制了其应用范围。借助热机械粉末固结法高效率、可连续、低成本的特点可生产低成本高性能的钛合金。本文对合作企业攀枝花市梦梦科技有限公司采用东北大学先进粉末冶金材料与技术团队开发的新型热机械粉末固结成形工艺制备的近静成形的Ti-6Al-4V(TC4钛合金)零件的材料微观
学位
横向感应加热具有加热速度快、加热效率高、环境友好以及易实现自动化控制等优点,不但可以节约能源、提高产品质量和生产效率,而且为开发组织性能优异的新材料提供了可能性。然而,横向感应加热存在边缘效应,即板带边缘与中间区域的温差大,使板带宽向出现温度分布不均匀现象。虽然国内外研究者提出多种改善边缘效应的方法,但仍无法达到工业应用的要求,板带宽向温度分布不均匀问题一直未得到很好地解决。如何解决横向感应加热温
学位
本文以某 1500 mm 五机架 UCMW(Universal Crown Mill with Work roll shifting)冷连轧机组边部减薄控制系统升级优化为背景。以UCMW冷轧机为研究对象,基于弹塑性有限元法,利用有限元软件ANSYS/LS-DYNA建立了 UCMW轧机轧辊与带钢耦合变形分析的三维有限元模型。研究了 UCMW轧机单锥度工作辊辊形的边降调控特性,主要内容如下:(1)研究
学位
磁性斯格明子是一种具有粒子性质的拓扑孤子,它具有尺寸小、驱动电流密度低等优越性,很有希望成为未来超高密度信息存储的基本单元。本论文通过微磁学模拟的手段,研究了斯格明子类自旋结构(包括斯格明子、嵌套斯格明子、靶态斯格明子等)的物理性质。第一、二章,首先从磁学的起源与发展和自旋电子学研究内容与现状出发,介绍了磁性斯格明子的来源、产生机理、材料和应用前景,引出了本论文选题目的及意义。接着介绍了微磁学计算
学位
铝及铝合金产品密度低,比强度高,耐蚀性好而广泛应用于航天、航海、航空、汽车、建筑等领域,但是由于铝合金的耐磨性较差,工业中的应用受到了一定的限制。采用搅拌摩擦加工法制备颗粒增强铝基表面复合材料可以提高铝合金表面的耐磨性同时保持铝合金原有的优良力学性能,然而搅拌摩擦加工法在制备该材料时,往往会遇到颗粒分布不均匀的问题。采用具有片层状颗粒与硬质颗粒相混合的颗粒增强形式,可以提高硬质颗粒分布的均匀性,因
学位
指示词是以指示为主要机能的词。「これ·それ·あれ·どれ」等代名词都有指示机能,此外还包含副词「こう·そう·ああ·どう」和连体词「この·その·あの·どの」也有指示机能。本研究只限定为指示词要素的复合,以「指示词的复合形式」作为研究对象。以语料库BCCWJ为数据库,观察复合形式的使用实态。在此基础上,通过“数据统计分析”的方法整合存在的复合形式的实例以及使用频度的分布状况。本论共分为三个部分,整理指示
学位