论文部分内容阅读
合成孔径雷达(Synthetic Aperture Radar,SAR)影像地物分割是SAR影像解译的一个基本环节。传统的地物分割算法存在大量人工干预,复杂度高,在泛化性和时效性上都无法达到要求。近年来,深度学习算法因其强大的特征提取能力在图像分割领域发展迅速。在SAR大数据背景下,深度学习网络模型可以依托海量的标注数据进行权重迭代更新,使得模型输出能够逼近标注结果。深度学习模型的产生是专家知识与经验积累的结果,其推断准确度受限于训练样本库的体量和质量,依赖于劳动密集型的数据标注工作。SAR影像强度信息受相干斑噪声的干扰,同时具有顶底位移、透视收缩等成像特点。特殊的成像机制使得SAR影像样本标注相较于照片或光学遥感影像要复杂得多,难以保证标注的效率和精度。因此,依托SAR大数据进行地物分割任务,需要耗费大量的时间成本来换取准确的全监督像素级地物标签。为解决上述问题,需要降低全监督地物标注的完整程度,改用在地物位置和轮廓信息上均有所损失的弱监督标注方式,如边界框标注,全局类别标注等,这势必会影响地物分割精度。本文既希望借助弱监督标注以大幅减少人工标注成本,又希望弱监督地物分割模型的精度能逼近全监督分割算法。为此,本文在分析SAR图像成像特性的前提下,开展了基于深度学习的SAR图像去噪以及弱监督地物分割研究。其中,前者为弱监督分割提供基础的数据支持,使弱监督分割算法在边界回归上不受噪声影响。后者将具体针对建筑以及船舶两类人造地物展开研究,在超像素聚类算法、概率图模型以及极坐标射线掩膜回归的辅助下得到精确的地物分割掩膜。主要研究内容及创新点如下:1.针对流行去噪方法性能固化的问题,提出基于纹理量化图的深度学习SAR图像去噪方法。在充分分析SAR噪声的空间相干性以及图像局部纹理特性的前提下,提出纹理量化图的概念并设计了一种新颖的二组分深度学习去噪网络。该网络可自动量化纹理特征,并自适应决定局部区域是平滑噪声还是保持细节。利用高分三号超精细条带模式数据进行实验,所提方法获得了29.23的等效视数,0.1183的噪声图均匀性指标以及0.0307的噪声图结构性指标。此外,多源机载和星载SAR数据去噪实验表明所提方法具有较好的泛化性能。与现阶段流行去噪方法相比,所提方法在主观目视评价以及客观指标评价上具备更优异的性能。同时,其为后续弱监督地物分割方法提供有效的数据支持,提升了分割边界的准确性和平滑连续性。2.针对全监督建筑区标注费时的问题,提出基于超像素分割和卷积神经网络(Convolutional Neural Network,CNN)的全极化SAR建筑区弱监督提取方法。该方法首先利用改进简单线性迭代算法自适应决定紧凑度因子以生成贴合地物边界的超像素,然后基于CNN对每个超像素的代表场景进行多尺度特征提取和分类。所提方法在仅依靠图像全局标签的情况下,将基本分割单元从像素上升为超像素,同时充分考虑极化分解特征和像素空间上下文特征,有效提升建筑区提取的效率和精度。基于高分3号全极化条带模式数据进行实验,所提方法的建筑区提取结果达到平均93.25%的总体精度,91.55%的检测率以及7.19%的虚警率。3.针对复杂场景下船舶定位困难的问题,提出一种基于类激活图和条件随机场的船舶弱监督分割算法。受到计算机视觉类激活图注意力机制的启发,着重验证了基于船舶全局标签进行船舶候选区提取的可行性,并深入分析了候选区的多尺度性和弱监督性。同时,引入全连接条件随机场对船舶候选区进行边界回归,形成精细分割掩膜。以高分3号精细条带模式数据作为实验数据,所提方法在多种背景下对船舶目标进行像素级分割,获得了88.54%的船舶检测率,8%的船舶虚警率以及90.412的F1分数。4.针对并排多目标无法进行准确单目标定位的问题,提出基于伪标签与极坐标射线回归的靠泊船舶弱监督分割方法。首先基于3中所提方法对靠泊船舶进行伪标签制作,结合少量全监督标注数据形成训练数据集;然后,把船舶实例分割问题分解为中心回归和射线回归两个子问题;最后构建极坐标下的交并比损失函数和焦点损失函数对网络进行综合训练。所提方法主要基于伪标签进行网络训练,有效解决了样本制作费时费力以及靠泊船舶样本稀少的问题。同时,通过船舶中心回归与掩膜射线回归机制显著提升密集排列船舶的分割能力。利用高分三号超精细条带模式数据进行实验,所提方法获得了90.75%的船舶检测率以及9.24%的虚警率,在对比方法中精度最高。同时对于训练集增广方式的控制变量消融实验表明,在使用了所提训练集扩增方式之后,网络检测率将得到显著提升,且虚警率会有明显下降。