间液蛋白在合浦珠母贝贝壳形成中的作用机制研究

来源 :清华大学 | 被引量 : 3次 | 上传用户:wang0525wz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
合浦珠母贝(Pinctada fucata)贝壳由珍珠层和棱柱层两种矿化层组成,其形成过程涉及一个矿化平衡的过程。间液位于珠母贝贝壳和外套膜之间,被认为在贝壳形成中起重要作用。然而,对间液的功能研究却相对较少。碳酸钙体外结晶实验表明间液蛋白不仅能够控制CaCO3晶体的形貌,而且能够通过文石和方解石特异结合蛋白调控CaCO3的晶型转变。结晶抑制实验表明,当CaCl2和NaHCO3的浓度从50mM降低到5mM时,间液蛋白从显著增加CaCO3晶体的数量转变为抑制CaCO3的沉积。间液蛋白同时能够显著抑制CaCO3结晶速率。在体内,当间液被连续抽取20天后,间液蛋白浓度降低,珍珠层不能形成正常的文石小片,取而代之的是无序沉积的方解石。同时,间液变化能够作为外部信号引起珍珠层和棱柱层形成相关基因的变化。综上所述,间液蛋白不但参与CaCO3结晶的成核,形貌,抑制和相变,而且在贝壳形成特别是珍珠层棱柱层转换中起着双重作用。随后我们对特异结合方解石和文石的间液蛋白进行了LC-MS质谱鉴定,共鉴定到了221条共有序列,79条方解石特异结合的序列和47条文石特异结合的序列。氨基酸组成分析发现与方解石特异结合的蛋白其Lys,Val,Ser和Gly含量相对较多,而与文石特异结合的蛋白其Leu,Glu和Val相对较多。结构域分析发现与方解石文石特异结合的蛋白结构域涉及离子调节,蛋白相互作用,蛋白酶抑制和胶原蛋白等,这些结果为后续研究提供了基础。最后,我们发现间液蛋白SPARC的含量在贝壳缺刻后48 h显著升高。SPARC在贝壳珍珠层及棱柱层EDTA可溶性组分中均存在。当用多克隆抗体将间液中SPARC拮抗掉以后,新生成珍珠小片受到明显影响。在体外,SPARC不但能够控制CaCO3晶体的形貌而且能在方解石结晶体系中诱导球文石的形成。然而,Mg2+能够抵消这种作用,并诱导文石的形成。进一步的圆二色谱实验表明,SPARC可能通过其蛋白二级结构的改变来发挥作用。结合结构域分析,我们发现其EC结构域在稳定球文石中起主要作用。综上所述,SPARC通过其EC结构域稳定球文石,从而抑制方解石的形成,以便在Mg2+的作用下促进文石的形成来参与贝壳的形成。综上所述,我们第一次深入研究了间液蛋白在珠母贝贝壳矿化平衡中的双重作用,并且发现间液中的蛋白能够控制ACC,球文石,方解石和文石之间的转变。我们的研究结果为珍珠生产和体外类似材料的合成提供了有力的理论指导。
其他文献
随着电力电子技术的发展,人们要求不断提高电能的转换效率。绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)作为半导体功率器件的关键元件,击穿电压BV、导通压降Von、关断损耗Eoff、d V/dt可控性、开启损耗Eon、短路耐受时间tsc等关键电学性能参数之间在器件设计时往往需要折中考虑。为了可以优化导通压降和关断损耗之间的矛盾关系,器件往往需要更加
太赫兹通信技术作为实现未来空间高速传输的关键技术,具有高频率、窄波束、抗干扰性强等优点。太赫兹通信技术将广泛应用于军事国防和民用通信领域。如何实现高速率远距离的太赫兹通信系统成为国内外研究的热点问题。太赫兹调制器作为太赫兹直接调制无线通信系统的核心组成器件之一,现阶段面临结构复杂、调制速率低等问题。本文将鳍线与人工微结构加载肖特基二极管结合的方式设计太赫兹调制器,并对设计的调制器在太赫兹通信系统中
回旋行波管是一种重要的高功率毫米波源,在雷达、通信系统和工农业生产等各领域中应用前景广阔。在传统微波和毫米波低端频段,TE01模回旋行波管的研究和应用较为普遍。但随着工作频率的不断提高,传统的TE01模回旋行波管难以满足高功率输出的需求。在这一背景下,以高阶模式作为工作模式的回旋行波管设计方案被相继提出,例如,以圆波导TE02模为工作模式的二次谐波回旋行波管放大器方案。与圆波导TE01模的回旋行波
第五代通信系统5G(5th-Generation)具有高速度、低时延、高可靠和大容量的特点,未来将广泛应用于各行各业中,推进军事、通信、交通、医疗和教育等行业往更加智能化的方向发展。与之相对应的,5G的发展对射频前端也提出了挑战。作为射频前端的主要部分之一,功率放大器,同时也是射频前端主要耗能的模块。对毫米波功率放大器的效率优化设计对节约能源有很实际的经济意义。另外,在工艺方面,硅基毫米波功率放大
太赫兹波因其独特的频谱特性而具有广阔的应用前景,在安全检测、医疗诊断、国防安全以及大容量通信等领域都展现出了很强的潜力。在太赫兹波技术的相关应用中,太赫兹探测器是太赫兹应用实现的关键一环。近年来,太赫兹场效应管探测器(Tera FET detector,又称等离子体波探测器)由于能够在室温下工作、小型化的优势得到了科研人员的重点关注。其中,硅基CMOS场效应管作为太赫兹场效应管探测器中的一种,凭借
在真空电子器件领域,行波管经过几十年的发展,已经被广泛的应用到国防科技、卫星通信等各个领域。其大功率、高效率、可靠性高等特点成为了其与固态器件竞争的重要优势。随着快速发展的第五代移动通信系统的逐渐普及,同时各领域在低频范围内的频谱资源分配愈发紧张,将毫米波技术应用到现代通信系统中可谓大势所趋,也为行波管这一具有悠久发展历史的器件注入了新的生命力。但是,从行波管注波互作用理论出发不难发现,此类器件是
石墨烯是sp~2杂化的碳原子按蜂巢状紧密排列形成的二维材料。石墨烯具有优异的电学、光电、力学等性能,可广泛应用于微电子、光电子器件、航空等领域。石墨烯薄膜常用的制备方法是化学气相沉积法(CVD)。铜基底是CVD制备石墨烯最常用的基底,它不仅拥有较好的表面催化能力,还有非常低的碳溶解度。现有的商用铜基底中,铁这种杂质元素是很难去避免的。因此,搞清铜基底上铁杂质元素对石墨烯生长的影响规律和机制进而提出
近几十年,晶体管的特征尺寸一直按照摩尔定律逐渐缩小,来到纳米尺度后,越来越严重的短沟道效应极大阻碍了器件性能的进一步提升。在此背景下,FinFET和GAAFET相继被提出,由于其在晶体管结构和形态上的创新使得相比传统平面MOS,它们拥有更卓越的性能优势。但FinFET和GAAFET并非完美器件,它们的沟道通常采用轻掺杂甚至不掺杂的本征硅来降低散射,通过三栅或者四栅结构来加强栅极对沟道的控制作用,因
在微波通信技术飞速进步的大背景下,器件小型化、多功能化和高集成度的趋势推动了新型材料的发展,同时也加速了低温共烧陶瓷(LTCC)技术的发展。LTCC材料烧结温度通常低于960℃,材料具有与应用场景相匹配的介电常数、较高的品质因数和近零的频率温度系数。探索低温烧结条件下具有优良性能的电介质材料成为一项迫切的课题。本论文的研究主要围绕以下两大方向展开:(1)探索中等介电常数(20≤εr≤80)的低温共
神经网络多采用冯·诺依曼架构计算机软件的形式进行工作,但随着神经网络结构愈发复杂、规模日益增大,在计算机上实现神经网络面临实现难度大、资源需求高、运算速度低等缺点。而基于存算一体的神经网络硬件实现方案,从结构和功能上模拟了生物神经元与神经系统,也克服了其在计算机上实现所面临的缺点。因此,本文设计了一种基于互补金属氧化物半导体(Complementary Metal Oxide Semiconduc